天山乌鲁木齐河源1号冰川大气气溶胶 和新雪中可溶性离子关系研究

张明军^{1,2},周 平¹,李忠勤^{2,1},赵淑惠²,金 爽¹

(1. 西北师范大学地理与环境科学学院,甘肃 兰州 730070; 2. 中国科学院寒区旱区环境与 工程研究所冰冻圈科学国家重点实验室 天山冰川站,甘肃 兰州 730000)

摘要: 在 2007 年4 月、8 月和10 月三个时段内, 分昼夜采集了 23 个气溶胶样品和 7 个新降雪样品, 对样品中的 可溶性离子进行了分析。结果表明, 乌鲁木齐河源 1 号冰川(以下简称 1 号冰川)春、夏、秋三个季节气溶胶平均 载量为 86.22 neq/m³, 分析显示 1 号冰川存在 $NH_4 HSO_4$ 和 $(NH_4)_2 SO_4$ 气溶胶, 并有少量 $NH_4 NO_3$ 气溶胶存在。 气溶胶和新雪样品中可溶性离子成分变化趋势相似, 气溶胶浓度升高, 新雪样品的浓度也会有所升高, 反之亦 然。 气溶胶和新雪中 Ca^{2+} 、 Mg^{2+} 、 Na^+ 、 Cl^- 、 K^+ 的相关性很好, 说明雪中这些离子的浓度基本能反映大气中的状 况; 对气相和颗粒相并存的 NH_4^{+} 和 NO_3^{-} 来说, 雪中的离子浓度和大气中的离子浓度不相关。 关 键 词: 乌鲁木齐河源 1 号冰川; 气溶胶; 气雪转换; 可溶离子

中图分类号: X142 文献标识码: A 文章编号: 1000 - 0690 (2010)01 - 0141 - 08

大气气溶胶既可来源于远距离传输,也可来源 于局地区域环流,后通过干、湿沉降方式降落在冰 川表面。永久性的冰原对于气溶胶颗粒和气体来 说形成一个储藏器^[1],由这些元素所构成的冰川 物质能够提供过去大气化学组成变化信息^[2]。通 过冰芯剖面重建古气候需要知道大气气溶胶组分 的源区、传输路径及清除过程和后沉积过程的影 响^[3],因而只有通过可信的气雪转换机制才能将 由源强度和传输效率变化所引起的离子剖面变化 所恢复^[4]。1989年在格陵兰实施的 Dye 3 冰芯计 划和在 Summit 开展 的气体和气溶胶 采样计 划^[5-7],使人们更清晰格陵兰地区大气和雪的化学 特征及控制化学组成的有关过程,然而大气和雪的 界面过程因研究成分的不同和地点的不同而有所 变化,因此在不同地区开展此项研究就很有必要。

自 20 世纪 90 年代开始,研究人员在南北极、 中亚^[8~13] 等许多雪冰地区开展了气溶胶、新雪和 表层雪的化学研究。Wake 等^[14] 和 Williams 等^[15] 最先对 1 号冰川雪冰的化学组成进行了研究,1996 年 Sun 等^[16]对 1 号冰川 5~6月 40 d内的气溶胶 和表层雪进行了采集和分析, Zhao 等^[17] 对 2002 ~ 2004 两年间气溶胶、表层雪和雪坑中 NO₃ 的转化 过程进行了分析,但上述研究只是针对1号冰川某 一时段的气溶胶及单一离子做出的研究。本文在 前人研究的基础上通过对2007年在1号冰川分季 节、分昼夜连续采集的气溶胶样品和部分新降雪样 品化学特征的综合分析,探讨该区域气溶胶可溶性 离子的化学组成及气溶胶和雪样中可溶性离子的 相互关系。

1 采样与分析

1.1 研究区概况

天山乌鲁木齐河源1号冰川(86°49 £.43°06′ N)位于天山山脉东段,四周为沙漠和戈壁所包围, 且邻近人类活动区,顺河谷而下约50 km的后峡镇 自1958年以来先后建有电厂和水泥厂等。国道 216 线在距1号冰川东南2 km 处翻越胜利达坂, 公路从海拔3600 m爬升至海拔4280 m的达坂顶 部,高差680 m,路面以沙石土路为主,经过车辆的 长期碾压,极易产生扬尘。气溶胶采样点在1号冰 川东支海拔4100 m处,该位置属于冰川上日照时 间最短的区域,尤其在冬季,完全无直接的日照,而 且风大寒冷,与许多高纬度极地的气候条件相似。

收稿日期: 2009-02-03; 修订日期: 2009-06-07

基金项目: 国家自然科学基金项目 (40701035, 40631001, 40571033)、霍英东教育基金 (101019)、陇原青年创新人才扶持计划、西北师范大学知识与科技创新工程科研骨干培育项目 (NWNU – KJCXGC – 03 – 45)资助。

[?]作者简介,张明军(1974-),男,甘肃宁县人,教授,主要从事冰川与环境方面的研究工作,Email,mizhane2004 @163.com ?1994-2018 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki.net

1.2 气溶胶和新降雪样品采集与分析

在 2007 年 4 月 16 ~23 日,8 月 5 ~14 日,10 月 20 ~24 日三个时段内,共采集 气溶胶样品 23 个,其中白天 14 个,晚上 9 个。采样一般在早晨 10:00 和晚上 22:00 开始,气溶胶样品的抽气量从 2.98 m³ 到 8.35 m³ 不等。样品的采集工作在没有 降水和浓雾的情况下完成。

大气气溶胶样品使用美国 New Hampshire 大 学研发生产的小流量滤器采集,白天和夜间分别使 用太阳能板和蓄电池驱动 12 V 直流泵完成采样工 作。滤膜使用 Pall 公司生产的背景浓度较低的 Zeflour Teflon 滤膜,滤膜直径 47 mm,孔径 2 μ m。 采集的气溶胶样品分析前置于 4 [°]C恒温避光保存。 新降雪样品取自气溶胶采样点旁,每次降水开始后 立即将事先用取样袋垫衬的取样盒置于约 1 m 高 的支架上收集,用以防止风吹雪的影响。

样品分析工作在天山冰川观测试验站实验室 内 100 级的超净环境中完成。具体实验方法参见 文献 [18]。 气溶胶中各种离子的检测限分别为 (neq/m^3) ; Na⁺ (0.144), NH₄⁺ (0.054), K⁺ (0.032), Mg²⁺(0.003), Ca²⁺ (0.019), Cl⁻ (0.049), NO₃⁻ (0.027), SO₄²⁻ (0.036)。

2 结果和讨论

2.1 气溶胶中可溶性离子成分变化特征

所采集的 23 个气溶胶样品分别代表春、夏、秋 三个季节气溶胶基本状况 (图 1), 所测可溶性成分 相应时段内的平均值见表 1。气溶胶中所测阴阳 离子总和在 23. 43 ~408. 71 neq/m³ 的范围内变 化, 三个季节的平均值为 86. 22 neq/m³。从表 1 中 可以看出气溶胶中所测阳离子总和 ($\Sigma^+ = Na^+ +$ [NH₄⁺] +[K⁺] +[Mg²⁺] +[Ca²⁺])为所测阴离 子总和 ($\Sigma^- = [Cl^-] + [SO_4^{2-} + NO_3^-]$)的 1. 61 倍, 这种现象存在于所有的 23 个样品中, 说明该地 区大气环境呈碱性。样品中大多数的阳离子过量 可以由实验中没有检测出的碳酸盐离子 (HCO₃⁻ / CO₃²⁻)所平衡, 前人研究^[19] 也表明该区积雪和冰 川冰中阴离子以 HCO₃⁻占绝对优势。

在采样时段内,大气气溶胶中各种可溶性成分的相关性显示(表 2),Cl⁻与Na⁺(r=0.94)和K⁺ (r=0.88)有着很高的相关性;作为粉尘替代指标的.Ca²⁺和Mg²⁺也有很高的相关性.(r=0.88), NH_4 ⁺与 SO₄²⁻高相关 (r=0.88), 与 NO₃⁻也有较好的相关性 (r=0.76)。

在三个季节的采样时段内, $Cl^- Na^+ K^+$ 有着 相似的变化趋势, 而且各离子间也有很高的相关 性, 说明它们具有相同的来源, 主要来源于天山山 系周围干旱区富含 $Cl^- Na^+$ 和 K^+ 的盐碱土^[20]。

 Ca^{2+} 与SO₄²⁻之间有着较好的相关性 (*r*= 0.85),但与 NO₃⁻的相关性较差。对三个季节气 溶胶中 NH₄^{+/}SO₄²⁻与 Ca²⁺/SO₄²⁻当量浓度比值 的分析发现,夏季气溶胶中 NH₄^{+/}SO₄²⁻与 Ca²⁺/ SO₄²⁻比值具有很好的反相关关系,其比值的相关 系数为0.75 (*p*=0.01),但在春、秋季节气溶胶中 NH₄^{+/}SO₄²⁻与 Ca²⁺/SO₄²⁻比值的相关系数仅为 0.29 和0.20。这可能是一部分 SO₄²⁻与矿物粉尘 有关,而另一部来源于 NH₄HSO₄ 和 (NH₄)₂SO₄; 而 且在不同季节源于矿物粉尘的 SO₄²⁻与来源于 NH₄HSO₄ 和 (NH₄)₂SO₄ 的 SO₄²⁻ 对气溶胶中总的 SO₄²⁻ 的贡献有所不同。

性说明,铵盐与硫酸盐较之硝酸盐优先发生化学反 应。1 号冰川大气气溶胶中基于每个样品所计算 的 NH4 +/SO4²⁻的比值在 4 月 16~23 日,8 月 5~ 14日,10月20~24日三个采样时段内有所不同, 分别为0.81、0.64、0.99。由于气体氨是大气中中 和 H₂SO₄、HNO₃ 的主要碱性气体, 但该地区的气 溶胶呈碱性,因而气溶胶中存在 H2SO4 的可能性 很小。根据 NH4⁺/SO4²⁻的比值,我们认为该区域 NH4⁺和 SO4²⁻ 主要以 NH4HSO4 和 (NH4)2SO4 的 形式存在,这与 Barrie^[21]和 Shrestha^[22]在北极地区 和喜马拉雅地区的研究结果一致;但与 Yalcin 等^[11]在加拿大 King Col 的研究结果有所不同。1 号冰川所采三个季节 30.43%的样品中存在 $NH_4^+/SO_4^{2-}>1$ 的情况,说明该地区大气中仍有 少量 $NH_{4}NO_{3}$ 气溶胶存在,这也是 NH_{4}^{+} 和 NO_{3}^{-} 之间有较好相关性的原因。

采样时段内 NO_3 ⁻除与 NH_4 ⁺有较高的相关性 外,和其它离子的相关性很低,与 SO_4^{2-} 相关性仅 为 0.54。研究认为 1 号冰川区 NO_3^{-} 和 SO_4^{2-} 来源 于中亚大面积干旱区陆地粉尘 ^[15,20],如果 NO_3^{-} 和 SO_4^{2-} 主要来源于矿物粉尘,它们应显示一致的变 化趋势,同时 NO_3^{-} 与其余离子也应有显著的相关 性,但实际上 NO_3^{-} 和 SO_4^{2-} 之间的变化趋势和相 hing House. All rights reserved. http://www.cnki.net

图 1 天山乌鲁木齐河源1号冰川大气气溶胶(步阶图)和新雪(柱状图)中各种可溶性成分的时间变化曲线 Fig.1 Concentration of soluble species in aerosol (step plots) and in fresh snow samples (black bars) collected on Glacier No. 1 at Urumqi River head, Tianshan Mountains

表 1 大山乌鲁木齐河源 1 号冰川大气气浴胶中各种离子的半均浓度及标准偏	差 (neg	$/m^3$)
---------------------------------------	--------	----------

	全 年(<i>n</i> =23)			4月16~23(n=7)			8月5~14 (n=10)			10月20~24(n=6)		
	平均值	中值	标准偏差	平均值	中值	标准偏差	平均值	中值	标准偏差	平均值	中值	标准偏差
Na ⁺	3.99	2.16	3.98	1.72	1.97	0.61	5.17	3.17	4.62	4.66	3.94	4.51
NH4 $^+$	6.77	4.52	8.22	3.45	3.88	1.62	8.41	5.79	11.11	7.89	5.35	7.06
K^+	2.34	1.67	1.94	1.21	1.11	0.35	2.31	1.62	2.13	3.72	3.45	2.03
Mg^{2+}	3.71	2.23	4.21	1.44	1.46	1.01	5.46	3.92	5.61	3.42	2.87	2.59
Ca ²⁺	36.30	25.74	30.63	19.08	18.26	7.69	46.51	35.98	38.60	39.38	35.01	27.19
Cl -	2.96	1.47	4.28	1.09	0.71	0.87	3.65	1.81	4.12	3.97	1.98	6.49
NO ₃ -	16.21	11.64	16.10	3.73	3.19	2.12	17.13	13.91	15.93	29.21	25.13	15.98
SO_4^2	13.93	6.38	23.87	5.33	5.77	1.31	22.74	9.87	34.96	9.27	8.77	4.63
Σ +	53.12	36.34	48.99	26.91	26.69	11.29	67.87	50.49	62.07	59.11	50.64	43.39
∑ -	33.09	19.51	44.26	10.17	9.68	4.32	43.52	25.60	55.02	42.47	35.89	27.11
$\Sigma^+ + \Sigma^-$	86.22	55.85	93.25	37.08	36.38	15.62	111.41	76.09	117.09	101.58	86.54	70.51
Σ^+ – Σ^-	20.02	16.83	4.72	16.74	17.01	6.97	24.35	24.89	7.05	16.63	14.74	16.27

 $\sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{$

1期

表2 天山乌鲁木齐河源1号冰川大气 气溶胶离子相关系数

 Table 2
 Coefficient between soluble species in aerosol samples collected on Glacier No. 1at Urumqi River head

					-		
	Na $^+$	$\mathrm{NH_4}^+$	K^+	Mg^{2+}	Ca ²⁺	Cl-	NO ₃ -
NH_4 +	0.48						
\mathbf{K}^+	0.86	0.62					
Mg^{2+}	0.91	0.58	0.73				
Ca^{2+}	0.88	0.60	0.83	0.88			
Cl -	0.94	0.40	0.88	0.80	0.84		
NO ₃ -	0.49	0.76	0.63	0.55	0.52	0.37	
SO_4^{2} -	0.68	0.88	0.69	0.76	0.85	0.63	0.54

样品数为23,当 r>0.54,在99.9 %的置信度下是显著的

关性均与上述现象不符。Zhao 等^[17] 对1 号冰川和 Inilchek 冰川 (80°12. 2[']E、42°12. 5[']N) 雪冰中 NO₃⁻的对比研究发现,1 号冰川 NO₃⁻的平均浓度 比 Inilchek 冰川高出 37. 14%。对于1 号冰川和 Inilchek 冰川来说,人为源污染物是冰川区气溶胶 中 NO₃⁻的主要来源,而1 号冰川 NO₃⁻平均浓度 比 Inilchek 冰川高说明局地污染物对1 号冰川 NO₃⁻的贡献更大,这应该是1 号冰川距污染物的 排放源更近的缘故。

2.2 气溶胶中可溶性离子化学组成的时空变化

大气气溶胶既可来源于远距离传输,也可来源 于局地区域环流,后通过干、湿沉降方式降落在冰 川表面,因此,气团源区、传输路径的改变和适时的 降水事件对气溶胶浓度的变化起主导作用,同时局 地风向的变化对气溶胶浓度的变化也有一定影响。

后向轨迹分析在大气科学中已得到广泛使用, 本文中我们采用 6 d 时长的反演时间,以 1 号冰川 采样点 (86[°]49[°]E、43[°]06[°]N[°])为气团运动终点,以北 京时间白天 15:00 (07:00 UTC[°])和夜间 02:00 (18: 00 UTC[°])为采样结束的时间,在海拔 3 500、4 100、 5 000 m 三个高度上采用 NCEP 的全球再分析数据 来计算后向轨迹。我们利用后向轨迹所推断出的 气溶胶源区的信息对采样期间所出现的气溶胶的 4 次峰值事件 (E1~E4)做了讨论 (图 1、2)。

1 号冰川地区属典型的大陆性气候, 西风带在 天山上空起着主导作用, 可把西亚和中亚广大干旱 地区的某些物质带到天山地区, 控制本地区气溶胶 离子浓度的变化。事件 E1 中(图 2A), 粉尘粒子 Ca²⁺和 Mg²⁺有着较高的峰值(4 月 17 日)。后向轨 迹显示气团在前进过程中横穿阿拉伯半岛, 并经过 了中亚的卡拉库姆沙漠、克孜勒库姆沙漠和莫因库 姆沙漠上空, 地面向大气中输入了大量粉尘粒子。 在 8 月 10、12 日出现的事件 E2 (图 2B)和事件 E3 (图 2C)中,除 Mg^{2+} 外,其余离子浓度都有升高,尤 其是在事件 E3 中,离子浓度峰值非常明显。研究发 现^[23-25],夏季是塔克拉玛干沙漠风沙活动最频繁也 是强度最大的季节,而且沙漠中含有丰富的 CaSO₄、 CaCO₃ 和 NaCl 等物质^[26],是 Ca²⁺、Na⁺、Cl⁻等离子 的主要源区;人为源气溶胶则来源于中亚各国生产 和生活所排放的污染气体。在 10 月 21 日的事件 E4 中 (图 2D),气团在进入中国境内后,穿越古尔班 通古特沙漠边缘,并经过石河子等城市上空,携带了 大量粉尘粒子; SO₄²⁻主要来源于城市生产和生活所 排放的 SO₂ 在大气中氧化所得产物^[27, 28]。

在1号冰川地区,降水的清除对气溶胶离子浓度的降低起着重要作用^[16],许多离子的浓度伴随着降水事件都有明显降低。但8月10日的降水事件对气溶胶浓度却无明显改变,仅 Mg²⁺浓度有所降低,考虑是受到局地风的影响。

2.3 新雪中离子浓度变化特征和气雪关系

采样期间我们于每次降雪后在气溶胶采样点 旁共收集了7个新降雪样品,尽管样品数目较少, 但仍有助于对气溶胶和雪中离子浓度变化趋势的 比较。图1可以发现,气溶胶和新雪样品中可溶性 离子成分变化趋势相似。气溶胶浓度升高,新雪样 品的浓度也会有所升高;气溶胶浓度降低,新雪样 品的浓度也会降低。这说明气溶胶的清除过程^[11] (干清除、湿清除、结晶)控制着新降雪的浓度,而 气团的源区和传输过程则影响着气溶胶的浓度。

气溶胶研究中通常用清除比率来反映降雪事 件中气雪之间的关系,它是根据气溶胶和新降雪的 浓度数据按下列公式计算:

$$W = \rho_{\rm air} C_{\rm snow} / C_{\rm air}$$

其中, ρ_{ar} 是空气的密度 (g/m^3) , C_{air} 是大气中该组 分的质量浓度 (ng/m^3) , C_{snow} 是雪中该组分的质量 分数 (单位是 ng/g)。 W的值越高, 说明降雪对该 种离子的清除效率越高。

表 3 收集了前人在不同地区所得清除比率的 研究结果,从表中可以看出,本研究所得的清除比 率与前人所报道的结果基本相似。粉尘粒子 (Ca^{2+},Mg^{2+}) 相对于 NH_4^+,SO_4^{2-} 和 NO_3^- 这类由 气 – 粒转化反应所生成的粒子来说有着相对较高 的清除比率,这说明降雪对粉尘颗粒的清除效率更 高。Li等^[32]研究表明, Mg^{2+} 与粉尘有密切关系,

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

主要以湿沉积的方式沉积到雪层表明,且该地区矿 物粉尘可能是随着水汽来自远源,因此 $M_g^{2^+}$ 浓度 与降雪有较好的对应关系。NH₄⁺相对于 SO₄²⁻和 NO₃⁻来说有着较高的清除比率,说明降雪对 NH₃ 的清除导致 NH₄⁺在雪中相对于气溶胶中富集。 在1号冰川所采 30.43% 的气溶胶样品中存在 NH₄⁺相对与 SO₄²⁻过量的情况,表明该地区大气 中有 NH₃ 存在。相比于其它 7 种离子, SO₄²⁻的清 除比率最小,有可能是 SO₄²⁻以 NH₄HSO₄ 和 (NH₄)₂SO₄ 的形式存在,而降雪对小颗粒盐的清 除率较差。

为进一步研究气溶胶和新降雪中可溶性离子 间关系,我们分析了气溶胶和新雪中对应离子的相 关性。在采样时段内,气溶胶和新雪中 Ca²⁺、 Mg^{2+} 、Na⁺、Cl⁻、K⁺的相关系数分别0.86、0.88、 0.66、0.63、0.81,说明这一地区雪中的这些组分能 够反映沉积时大气中的浓度。研究表明积雪内的 SO₄²⁻是"不可逆沉降"的^[33],即 SO₄²⁻经过干、湿 沉降作用至积雪表面后不再与外界大气产生交换 作用,气雪中 SO₄²⁻浓度相关性 (r = 0.34)低与气 溶胶中 SO₄²⁻清除率很低有关。气雪中 NH₄⁺和 NO₃⁻没有显著的相关性,大气中存在气态的 NH₃ 和 HNO₃与颗粒态的 NH₄⁺和 NO₃⁺,研究指出^[34], 大气中以气相形式存在的成分比颗粒相存在的成 分要复杂的多,因为气相形式存在的成分有时与雪 冰发生反应。积雪中 NO₃⁺的分解导致的雪样中 NO₃⁻浓度降低也是影响气雪关系的一个重要原 因。

30 卷

表3 个向地区降雪清除比率1	じ蚥
----------------	----

Table 3 Comparison of scavenging ratios at different locations

	Na ⁺	NH_4 +	K ⁺	Mg ²⁺	Ca ²⁺	Cl -	SO4 ²⁻	NO 3 -	地点	
平均值	2000	na	1200	1800	na	na	180	na	Dye 3,	
标准偏差	1200	na	620	1100	na	na	120	na	Greenland ^[27]	
平均值	na	na	na	na	2400	na	1000	na	Dye3,	
标准偏差	na	na	na	na	na	na	na	na	Greenland ^[7]	
平均值	na	na	na	na	na	na	500	na	Summit,	
标准偏差	na	na	na	na	na	na	na	na	Greenland ^[28]	
平均值	na	na	na	na	na	na	350	940	Alpine	
标准偏差	na	na	na	na	na	na	na	na	Switzerland [29]	
平均值	1880	na	1270	2680	2150	na	550	na	Tianshan,	
标准偏差	2200	na	930	2400	2170	na	140	na	China [16]	
平均值	1393	na	2436	2580	1805	2582	487	2502	M: O 1 [12]	
标准偏差	1593	na	2092	2277	1873	1870	326	2007	Mt. Qomolangma	
平均值	462	1559	700	2697	4540	872	1708	8253	Mt. Logan,	
标准偏差	361	1504	479	1893	2972	779	1072	5744	Canada ^[11]	
平均值	2202	na	3064	5880	4387	1280	202	417	M: O 1 [13]	
标准偏差	2322	na	2484	4177	2279	2434	173	590	Mt. Qomolangma	
平均值	1535	1768	1078	3436	2445	2091	480	1060	+ × ×	
标准偏差	1030	1315	702	1939	1797	1332	210	493	4℃又	

"na"表示无数据

3 结 论

1)1号冰川春、夏、秋三个季节气溶胶平均载 量为86.22 neq/m³。NH₄⁺/SO₄²⁻的比值在三个采 样时段内分别为0.81、0.64、0.99,说明该区域 NH₄⁺和SO₄²⁻主要以NH₄HSO₄和(NH₄)₂SO₄的 形式存在。同时1号冰川30.43 %的样品中存在 NH₄⁺/SO₄²⁻>1的情况,而且NH₄⁺和NO₃⁻的相 关性较好,表明该地区大气中有NH₄NO₃ 气溶胶存 在。

2) 气溶胶样品和新雪样品中可溶性离子成分 变化趋势相似。气溶胶浓度升高, 新雪样品的浓度 也会有所升高; 气溶胶浓度降低, 新雪样品的浓度 也会降低。

3)清除比率计算结果显示粉尘颗粒物 (Ca^{2+} 、 Mg^{2+})有着相对较高的清除比率,说明降雪对粉尘 颗粒的清除效率更高。相对于其它离子, SO_4^{2-} 的 清除比率最小,说明大部分 SO_4^{2-} 以小颗粒物的形 式存在。

4) 气溶胶和新雪中 Ca^{2+} 、 Mg^{2+} 、 Na^{+} 、 Cl^{-} 、 K^{+} 的相关性很好, 说明雪中这些离子的浓度基本能反 映大气中的状况; 气雪中 SO₄²⁻ 浓度相关性低可能 与降水对 SO₄²⁻ 气溶胶的清除率低有关; 对气相和 颗粒相并存的 NH₄⁺和 NO₃⁻来说, 雪中的离子浓 度和太气中的离子浓度不相关

参考文献:

- Preunkert S, Wagenbach D. An automatic record for air/firm transfer studies of chemical aerosol species at remote glacier sites [J]. Atmospheric Environment, 1998, 32 (23): 4021 – 4030.
- [2] 张明军,任贾文,效存德,等.南极伊丽莎白公主地250年来海、陆盐离子浓度特征[J].地理科学,2003,23(5):560~563.
- [3] Albert M, Shultz E. Snow and fim properties and air snow transport process at summit, Greenland [J]. Atmospheric Environment, 2002, 36 (15 – 16): 2789 – 2797.
- [4] Udisti R, Becagli S, Benassai S, et al. Atmosphere snow interaction by a comparison between aerosol and uppermost snow – layers composition at Dome C, East Antarctica [J]. Annals of Glaciology, 2004, 39:53 – 61.
- [5] Dibb J, Jaffrezo J. Air snow exchange investigations at Summit Greenland: An overview [J]. Journal of Geophysical Research, 1997, 102 (C12): 26795 – 26807.
- [6] Dibb J, Jaffrezo J, Legrand M, et al. Initial findings of recent investigations of air – snow relationships in the Summit region of Greenland ice sheet [J]. Journal of Atmospheric Chemistry, 1992, 14 (1 – 4): 167 – 180.
- [7] Davidson C I, Jaffrezo J L Mosher J E, et al. Chemical constituents in the air and snow at Dye 3, Greenland – II. Analysis of episodes in April 1989 [J]. Atmospheric Environment 1993, 27 (17-18): 2723-2737.
- [8] Wolff E W, Legrand M R, Wagenbach D. Coastal Antarctic aero-

度和大气中的离子浓度不相关。 [1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net search, 1998, 103 (D9): 10927-10934.

- [9] Wolff E W, Hall J S, Mulvaney R, et al. Relationship between chemistry of air, fresh snow and firn cores for aerosol species in coastal Antarctica [J]. Journal of Geophysical Research, 1998, 103 (D9); 11057 - 11070.
- [10] Jaffrezo J L Davidson C I. The Dye 3 Gas and Aerosol Sampling Program an overview [J]. Atmospheric Environment 1993, 27 (17-18): 2703-2707.
- [11] Yalcin K, Wake C P, Dibb J E, et al. Relationship between aerosol and snow chemistry at King Col, Mt. Logan Massif, Yukon, Canada [J]. Atmospheric Environment, 2006, 40 (37): 7152 – 7163.
- [12] Shrestha A B, Wake C P, Dibb J E, et al. Aerosol and precipitation chemistry at a remote Himalaya site in Nepal [J]. Aerosol Science and Technology, 2002, 36 (4):441-456.
- [13] Ming J, Zhang D Q, Kang S C, et al. Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest) [J]. Journal of Geophysical Research, 2007, 112 (D15), doi: 10.1029/2007 JD008618.
- [14] Wake C P, Mayewski P A, Wang P, et al. Anthropogenic Sulfate and Asia dust signals in snow from Tien Shan northwest China [J]. Annals of Glaciology, 1992, 16:45 – 52.
- [15] Williams M W, Tonnessen K A, Melack J M, et al. Sources and spatial variation of the chemical composition of snow in the Tien Shan, China [J]. Annals of Glaciology, 1992, 16:25-32.
- [16] Sun J Y, Qin D H, Mayewski P A, et al. Soluble species in aerosol and snow and their relationship at Glacier No. 1, Tien Shan, China [J]. Journal of Geophysical Research, 1998, 103 (D21): 28021 – 28028.
- [17] Zhao Z P, Li Z Q, Edwards R, et al. Atmosphere to snow to – firn transfer of NO₃ – on Urumqi glacier No. 1, eastern Tien Shan, China [J]. Annals of Glaciology, 2006, 43; 239 – 244.
- [18] 赵中平,李忠勤.离子色谱法测定大气气溶胶中的可溶性离子[J].现代科学仪器,2004,(5):46~49.
- [19] 骆鸿珍. 天山乌鲁木齐河源1 号冰川的水化学特征[J]. 冰川 冻土, 1983, 5(2): 55~64.
- [20] Wake C P, Mayewski P A, Spencer M J. A review of central Asian glaciochemical data [J]. Annals of Glaciology, 1990, 14: 301 – 306.
- [21] Barrie L A, Barrie M J. Chemical components of lower tropospheric aerosol in the high Arctic: six years of observations [J]. Jour-

nal of Atmospheric Chemistry, 1990, $\mathbf{11}$ (3): 211 – 216 .

- [22] Shrestha A B Wake C P, Dibb J E, et al. Chemical composition of aerosol and snow in the high Himalaya during the summer monsoon season [J]. Atmospheric Environment, 1997, 31 (17): 2815 - 2826.
- [23] 韩致文,王 涛,董治宝,等.塔克拉玛干沙漠公路沿线风沙 活动的时空分布[J].地理科学,2005,25(4):455~460.
- [24] 史兴民,李有利,杨景春.新疆玛纳斯湖变迁的气候和构造分析[J]. 地理科学,2008, **28**(2): 266~271.
- [25] 王君波,朱立平,鞠建廷,等. 西藏纳木错东部湖水及入湖河 流水化学特征初步研究[J].地理科学,2009,29(2):288 ~ 293.
- [26] Okada K. Kai K J. Atmospheric mineral particles collected at Qira in the Taklamakan Desert China [J]. Atmospheric Environment, 2004, 38 (40): 6927 – 6935.
- [27] 王淑兰, 柴发合, 周来东, 等. 成都市大气可吸入颗粒物来源 解析研究[J]. 地理科学, 2006, 26(6): 717~721.
- [28] 王起超,李东侠,方风满.长春市空气中总悬浮微粒分布规律 及来源的探讨[J].地理科学,2002,22 (3):355 ~359.
- [29] Davidson C I Santhnam S, Fortmann B C, et al. Atmospheric transport and deposition of trace elementsonto the Greenland ice sheet[J]. Atmospheric Environment 1985, 19 (12): 2065 – 2081.
- [30] Silvente E, Legrand M. Ammonium to sulfate ratio in aerosol and snow of Greenland and Antarctic regions [J]. Geophysical Research Letter, 1993, 20 (8): 687 - 690.
- [31] Baltensperger U, Schwikowski M, Gaggeler H W, et al. Transfer of atmospheric constituents into an Alpine snow field [J]. Atmospheric Environment, 1993, 27 A (12): 1881 – 1890.
- [32] Li Z Q Ross E Thompson E M et al. Seasonal variabilities of ionic concentrations in surface snow and elution processes in snow – fim packs at the PGPI site on Glacier No. 1 in eastern Tianshan, China [J]. Annals of Glaciology, 2006, 43 (1): 250-256.
- [33] Legrand M, Leopold A, Domine F. Acidic gases (HCk HF, HNO₃, HCOOH and CH₃ COOH): A review of ice core data and some preliminary discussions on their air – snow relationships [M]. //Wolff E W, Bales R C. Chemical Exchange between the Atmosphere and Polar Snow, Springer – Verlag Berlin Heidelberg NATO ASI Series J, 1996; 19 –43.
- [34] Legrand M, Mayewski P A. Glaciochemistry of polar ice cores: a review [J]. Reviews of Geophysics, 1997, 35 (3): 219-243.

Relationships Between Aerosol and Snow Chemistry on Glacier No. 1 at Urumqi River Head, Eastern Tianshan Mountains, China

ZHANG Ming-jun^{1,2}, ZHOU Ping¹, LI Zhong-qin^{2,1}, ZHAO Shu-hui², JIN Shuang¹

(1. College of Geography and Environment Science, Northwest Normal University, Lanzhou, Gansu 730070;

2. The State Key Laboratory of Cryospheric Sciences/Tianshan Glaciological Station. Cold and Arid Regions

Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000)

Abstract: Simultaneous samples of aerosol and fresh snow were collected at Glacier No. 1 (4100 m a. s.l.), Tianshan Mountains, between April 16 to 23, August 5 to 14, and October 10 to 24, 2007. Aerosol and snow chemistry (including the species of Na +, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻ and SO₄²⁻) is analyzed and discussed. Major ion concentrations in aerosol samples change heavily with the total ionic burden averaging 86.22 neq/m⁻³ at standard temperature and pressure (STP). Interspecies aerosol relationships indicate the presence of NH₄HSO₄ and (NH₄)₂SO₄ aerosol at Glacier No. 1 also with NH₄NO₃. High scavenging ratio values are found for all species except SO₄²⁻. Periods of increased concentrations in the aerosol are generally reflected by increased concentrations in the snow, and vice versa. Correlation coefficients between aerosol and snow for Ca²⁺, Mg²⁺, Na⁺, Cl⁻, K⁺ show that snow chemistry basically reflects changes in the chemistry of the atmosphere. There are no significant correlations between aerosol and snow samples for NH₄⁺, NO₃⁻ and low correlation coefficient for SO₄²⁻.

Key words: Glacier No.1 at Urumuqi River head; aerosols; air-snow transfer; water-soluble ions