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ABSTRACT 

The isotope ratios in precipitation are associated with various meteorological processes and display obvious spatial and temporal 
distributions, and thus can be used as important techniques in inversing atmospheric processes, tracing vapor sources, and reflect-
ing the local weather and climate conditions. The composition and distribution of stable isotopes in precipitation in China are 
summarized and the factors that influence isotope ratios are elucidated. An overview of related research progress in China during 
the past several decades is presented and the prospects for future work in this subject area are described. 
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1. Introduction 
 

Stable isotopes are important components of natural wa-
ter. The isotope fractionation effect in phase transition occurs 
in every aspect of the water cycle in nature, which is sensi-
tive to environmental changes. The abundance of stable iso-
topes in precipitation, as important elements of the water 
cycle, closely relates to the meteorological conditions of 
rainfall formation and the initial conditions of the water va-
por source (Zhang et al., 2004a). Along with climate change, 
deuterium (2H) and oxygen-18 (18O) in precipitation can also 
change in different spatio-temporal backgrounds (Dansgaard, 
1953, 1964; Zhang et al., 2004a). Thus, the stable isotopes in 
precipitation can reflect the regional characteristics of cli-
mate and weather, and can serve as a natural tracer of its 
source (Zhang and Yao, 1994a). In addition, stable isotopes 
are widely applied in paleoclimate reconstruction (with ice 
cores, tree rings, lake sediments, and stalagmites), water 
resource investigation, and other research (Rozanski, 1985; 
Yao and Thompson, 1992; Dansgaard et al., 1993; Thomp-
son, 1995; Bryant et al., 1996; Fricke et al., 1998; Cham-

berlain and Poage, 2000; Dettman and Lohmann, 2000). 
The earliest study of stable isotopes in precipitation be-

gan in the 1950s (Dansgaard, 1953). In order to investigate 
global isotopes, the International Atomic Energy Agency 
(IAEA) and the World Meteorological Organization (WMO) 
launched a program called the Global Network of Isotopes 
in Precipitation (GNIP) in 1961 (Dansgaard, 1964), and es-
tablished more than 100 observation stations monitoring 
stable isotopic composition in precipitation. Currently there 
are more than 550 stations in this network. 

In China the study of stable isotopes in the water cycle 
began with the scientific investigation of Mount Qomo-
langma in 1966, shortly after the establishment of the GNIP 
(Zhang et al., 1973). Before 1983 China had only one sta-
tion (Hong Kong) in the GNIP (Li and Zhang, 2004). Since 
the 1980s, more observation stations for monitoring stable 
isotopes were established in China, including in Qiqihar, 
Hotan, Yinchuan, Shijiazhuang, Tianjin, Lhasa, Kunming, 
Changsha, Guiyang, Nanjing, Fuzhou, Haikou, Guilin, 
Xi’an, Guangzhou, and other cities. To date more than 10 
stations in China have been included in the GNIP network. 
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However, there is still very limited scientific research in 
such a large area. In 2004, based on the successful experi-
ences such as the GNIP and the existing field stations of the 
Chinese Ecosystem Research Network (CERN), China es-
tablished a national network named the Chinese Network 
Isotopes in Precipitation (CHNIP), and δD and δ18O in pre-
cipitation began to be observed systematically (Song et al., 
2007). Utilizing this new network, China’s scientists have 
done many researches on isotopes in precipitation (e.g., Wei 
and Lin, 1994; Zhang and Yao, 1995a, 1998; Zhang et al., 
1996, 2004a, 2006; Liu et al., 1997; Tian et al., 2001e; Liu 
ZF et al., 2009). 

This paper summarizes the stable isotope composition 
distribution in precipitation and analyzes the influence of 
meteorological factors such as precipitation, temperature, 
winds, etc. Based on a comprehensive natural zoning meth-
od (Huang, 1959), the regional characteristics are evaluated 
in three different climatic zones in China (the Tibetan Plat-
eau, the arid region in the northwest of China, and the mon-
soon region in East China). 
 
2. Effect factors of δ18O in precipitation 
 

Utilizing data from 1961–1962, Dansgaard (1964) dis-
cussed the factors of seasonal and spatial distribution influ-
encing δ18O in precipitation, and described the latitude effect, 
temperature effect, altitude effect, amount effect, and conti-
nental effect. These effects were mainly based on the mete-
orological data and geographical factors at the sampling sites. 
Further study by Zhang et al. (2004a) showed that tempera-
ture is the main controlling factor at the high latitudes, espe-
cially at the poles (Zhang et al., 1995), and that more signif-
icant positive correlations between temperature and isotope 
values can be found at the inland than at the coast (Zhang 
and Yao, 1998). In the tropics, rainfall is the main factor, 
while in the mid-latitudes the combined effect of tempera-
ture and precipitation influences the isotopic variation. 

The temperature effect and amount effect in China have 
been widely researched using meteorological data (Zhang 
and Yao, 1994a; Wang et al., 2001). Zhang et al. (2003b, 
2005) argued that the condensing temperature in clouds, 
rather than the ground temperature, relates directly to the 
δ18O values in precipitation, and the temperature effect 
dominates under an annual scale whatever the temperature 
effect or amount effect exists under a monthly scale. Liu ZF 
et al. (2009) established a negative correlation between δ18O 
in precipitation and latitude or altitude by a Bow-
en-Wilkinson model. 

However, the source and nature of the air mass can also 
influence the isotopic composition in precipitation (Wei and 
Lin, 1994). Water vapor in the atmosphere is the prerequisite 
of the rainfall, so the isotope composition in vapor can sig-
nificantly affect that in precipitation (Hübner et al., 1979; 
Schoch-Fischer et al., 1984). Additionally, vapor pressure is 
also a significant factor (Zhang and Yao, 1994b). Zhang and 
Yao (1995b) conducted related research on the original con-

ditions and transportation of vapor, vapor saturation in 
clouds, and liquid water content in clouds. For example, it 
has been shown that the stable isotope ratios in raindrops 
increase as landing distance increases in a non-saturated 
atmosphere, and this is more significant with lower moisture 
(Zhang, 1997; Zhang et al., 1998). By a dynamic fractiona-
tion model, Zhang et al. (2001) created a simulation of the 
isotope effect in mixed clouds. Their results showed that a 
negative correlation exists between the stable isotope ratios 
of condensation water and the maximum possible amount of 
condensation. 

However, the stable isotope ratio in dropped rain is quite 
different, so the moisture effect is set, which means that the 
stable isotope ratio in precipitation correlates with tempera-
ture depression of the dew point in atmosphere (ΔTd) (Zhang 
et al., 2004b). Wang et al. (2009) built a differential equation 
model to simulate the changes of stable isotopic composition 
of rainfall. 

Monsoon climate is widely distributed in China, espe-
cially in East China. Under the monsoon circulation, the 
spatial and seasonal distribution of precipitation is influ-
enced by large-scale vapor transportation and budgets. Thus, 
the isotopic composition is affected, but not only by the 
temperature effect and latitude effect (Pang et al., 2004a, b); 
Wei and Lin (1994) and Yamanaka et al. (2004) have shown 
that due to the impact of monsoon activity, δ18O in precipita-
tion in East China is obviously influenced by the amount 
effect. Pang et al. (2004a, b) concluded that the δ18O in 
monsoon precipitation is also related to sunspots and ENSO 
(El Nino/Southern Oscillation), and the wind speed at high 
altitudes in the monsoon region exhibits a significant posi-
tive correlation with δ18O of precipitation. Additionally, 
Pang et al. (2005) developed a new method for defining the 
origin of precipitation based on Rayleigh fractionation. 

In summary, the two factors that affect the hydrogen and 
oxygen isotope composition in precipitation are, first, the 
environmental background of regional climate, that is, the 
source and nature of the water vapor and the hydrogen and 
oxygen isotope variation from vapor generating until the 
precipitation event; second, the local geographic factors, 
including the various meteorological elements in the precip-
itation process (especially the amount of precipitation, the 
temperature, and the humidity) and the latitude and altitude 
(Tian et al., 1997). These factors affect each other, which 
determine the spatio-temporal distribution of stable isotopes 
in China. 

Researches on China’s stable isotope composition in 
precipitation can reveal the source and cycling of water va-
por; the influence of monsoon, ENSO, and other climate 
events; and the significance of environments in different 
areas. 
 
3. Spatial distribution of δ18O in precipitation 
 

Using GNIP data, Zhang et al. (1998) drew a spa-
tial-temporal distribution of δ18O values in China, which is 
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higher in the southeast and northwest of China, and lower in 
the northeast of China and the southern Tibetan Plateau; then 
he and his colleagues found three vapor routes of precipita-
tion in China (Zhang et al., 2004a). Research by Liu et al. 
(1997) also found that the high-value areas of δ18O in pre-
cipitation are in the southeast coast region year-round, but 
the low-value areas change with the seasons. The δ18O val-
ues at middle-high latitude and middle-low latitude regions 
are different in summer and winter months in China. This 
difference is related with the temperature variation and the 
seasonality of air mass (Zhang and Yao, 1998; Zhang et al., 
2004b). 

Seasonal distribution of stable isotopic ratios in precipi-
tation can be classified into two types. First, in the inland 
region at middle-high latitude, the stable isotopic ratio cor-
relates positively with the temperature, and the seasonal 
distribution of δ18O values in precipitation is similar to that 
of temperature, so it displays as the temperature effect. Se-
cond, in the coastal region and monsoon region, the stable 
isotopic ratio and temperature have a significantly negative 
correlation, so it is attributed to the amount effect. Generally, 
the temperature effect appears north of 34°–36°N (Zhang et 
al., 2008). Luo et al. (2008) found that the distribution of 
δ18O is not parallel with latitude and shows a classic saddle 
shape. The values of δ18O are higher in the southeast and 
northwest of China and lower in the northeast of China and 
the southern Tibetan Plateau. These results agree with earlier 
research but the regional characteristics are predominantly at 
small-scale, which is related to the local evaporation, mon-
soon, and water vapor source. 
 
4. Study of δ18O in precipitation in different regions 
 
4.1. The Tibetan Plateau 
 

Mountain glaciers are widely distributed in the Tibetan 
Plateau, which provides a platform for paleoclimate study. 
During the past two decades, many ice cores were drilled in 
the Tibetan Plateau (Yao et al., 1991b, 1994, 1996; Hou and 
Zhang, 2003). The high-resolution ice core method is help-
ful for studying the stable isotopes in long-term precipitation. 
The unique topography in the Tibetan Plateau makes the 
moisture source of precipitation more complex. Due to the 
different sources of and the nature of the water vapor, it ex-
hibits different features in the ratio of stable isotopes in dif-
ferent areas. Therefore, the Tibetan Plateau can be subdi-
vided into monsoon areas, non-monsoon areas, and their 
transition areas. 

At the beginning of the summer monsoon, the δ18O val-
ues in precipitation suddenly decrease (Yao et al., 1991a), 
reflecting the amount effect (Tian et al., 1997). This may be 
related to the water vapor transportation at the low level of 
ocean (Tian et al., 2001b). Studies have also indicated that 
the δ18O values in precipitation show a relatively high level 
except in summer (Tian et al., 2003, 2005, 2006), with no 
temperature effect. Tian et al. (2001c) found that the change 

of δ18O in precipitation is related to the intensity of the 
monsoon; the relationship between water vapor transporta-
tion and the variation of δ18O in precipitation were simulated, 
showing a strong amount effect. However, at the long-term 
scale, δ18O in precipitation and temperature still have posi-
tive correlation (Yao et al., 1996), and the temperature effect 
is evident in the ice cores (Thompson et al., 2000). In addi-
tion, in high-altitude areas, the altitude effect of δ18O in pre-
cipitation is obvious (Tian et al., 1998) and the variation of 
δ18O in precipitation with the elevation also affected by to-
pography (Kang et al., 2000). 

In the central Tibetan Plateau, the Tanggula Mountains 
around 32°N–33°N are an important line of demarcation 
between monsoon areas and non-monsoon areas (Liu and 
Hou, 1999; Wang, 2006). Influenced by the southwest 
monsoon, the δ18O values in summer precipitation trend 
downwards (Tian et al., 2002; Yu et al., 2006), but the trend 
is less significant than that in the southern Tibetan Plateau 
(Yu et al., 2008). During the intermission between mon-
soons, relatively high δ18O values still exist in precipitation, 
which may be caused by the recycling of local vapor (Yu et 
al., 2009). In addition, the fluctuation of δ18O in summer 
precipitation is controlled by the large-scale process rather 
than the local meteorological conditions (Tian et al., 2001d). 

In summary, the δ18O in summer precipitation from 
southwest monsoon is low; the stronger the monsoon, the 
lower the isotopic values in the precipitation. However, the 
δ18O in precipitation from the north or from local evapora-
tion is high. At an annual scale, a positive correlation can be 
found between isotopes and temperature, and, before the 
monsoon occurs, the correlation is more significant (Yu et 
al., 2006). 

In the northern Tibetan Plateau, many studies have 
shown that δ18O in precipitation is positively related with 
temperature, which is manifested as a temperature effect 
(Yao et al., 1995; Zhang et al., 1995; Yao et al., 1996). Yao 
et al. (1995) quantitatively described the relationship be-
tween δ18O in precipitation and temperature: as δ18O in pre-
cipitation increases (or decreases) by 1‰, the temperature 
will rise (or fall) about 1.6 °C. This presents a negative rela-
tionship between δ18O in precipitation and altitude, which 
also reflects the impact of temperature change (Yao et al., 
1994; Li et al., 2006). There is an obviously positive correla-
tion between δ18O in precipitation and temperature in the 
northern Tibetan Plateau, so the δ18O in ice cores is a reliable 
indicator for this area, which is important in paleoclimate 
reconstruction. 

In summary, the stable isotopes in precipitation of dif-
ferent areas in the Tibetan Plateau have different characteris-
tics, which are related to the local temperature, humidity, air 
pressure, air mass properties, elevation, and complex precip-
itation conditions, especially the properties of air mass. The 
positive correlation between temperature and the δ18O val-
ues in precipitation becomes increasingly remarkable from 
south to north, as influenced by the monsoon (Zhang et al., 
2002), and the average δ18O value in summer precipitation 
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increases gradually from south to north (Tian et al., 2001a). 
 

4.2. The arid region of Northwest China 
 

The arid region of Northwest China is located in the 
center of Eurasia, which is north of the Tibetan Plateau. The 
northwest wind prevails in winter, and wet air masses from 
the ocean in the summer are limited, so the precipitation is 
generally low (Yu et al., 2003; Guo and Li, 2006). It is prac-
tical for studying the regional water circulation, according to 
the spatial and temporal distribution of the stable isotope 
composition. 

Many reports show that the intercepts and slopes of the 
meteoric water line (MWL) in Northwest China are lower 
than the GMWL, and δ18O in precipitation does not decrease 
with increasing precipitation at the annual scale. In other 
words, there is no amount effect. The δ18O value in summer 
precipitation is high, which agrees with the dry season’s 
values in the inland area (Zhang et al., 2006). However, the 
annual temperature effect is very clear in the northwest of 
China, and the value of δ18O—the maximum and minimum 
of which appears in the summer and winter, respective-
ly—increases with rising temperature. The temperature ef-
fect is mainly caused by the stable isotope fractionation in 
atmosphere and precipitation, and the stable isotopes are 
generally subjected to the temperature in the phase transition 
process (Zhang et al., 2003a). We can reasonably explain 
and quantitatively recover climate information in the differ-
ent sediments at the middle and high latitudes by determin-
ing the linear relation between the stable isotopic ratio and 
temperature, which is useful to reconstruct the local climate 
(Kang et al., 2000). 

In winter, the precipitation in the northwest of China 
mainly comes from the Arctic Ocean, with a route from 
northwestern Xinjiang to the East (Li and Zheng, 1992; 
Wang et al., 2005; Wang et al., 2006). The δ18O values en-
rich gradually as the vapor is transported (Liu et al., 2008). 
This is related to the isotopic fractionation of precipitation; 
before the water falls to the surface it experiences a second 
evaporation or is possibly mixed with a certain amount of 
water vapor from the local surface (Li and Zhou, 2007; Li et 
al., 2009). These characteristics of δ18O values are distinct 
from those in other regions. 

In summer, the air masses that influence the northwest of 
China are very complex (He et al., 2005; Zhao et al., 2006), 
and the different regions also show different features. 
Through analyzing the distribution of δ18O values in precip-
itation, Liu et al. (2008) revealed the precipitation moisture 
source and trajectory through the northwest of China in 
summer. 
 
4.3. The monsoon region of East China 
 

The monsoon region of East China is mostly bounded by 
105°E, where it lies east of the line of the Da Hinggan 
Mountains, the Yinshan Mountains, the Helan Mountains, 

the Wushao Mountains, the Nyainqentanglha Mountains, 
and the Hengduan Mountains (Huang, 1959). From the Qin-
ling Mountains–Huaihe River line (a traditional line between 
the subtropical zone and the temperate zone), we subdivided 
the monsoon region of East China into the southern area 
(henceforth, South China) and the northern area (henceforth, 
North China). 

The meteorological factors affecting precipitation in 
South China are complex because of its water vapor sources, 
which include the western Pacific, the South China Sea, the 
Bengal Bay, the Arabian Sea, and others (Sun et al., 2006). 
In addition, South China lies at the junction area of mon-
soons from East Asia, South Asia, and the Tibetan Plateau, 
so the distribution of stable isotopes in precipitation can 
indicate the transport path (Dansgaard, 1964; Cui et al., 
2005; Pang and He, 2005). Due to its location, South China 
is a hot spot in related research. For example, according to 
Pang and He (2005) the isotopic data from two typical sta-
tions, New Delhi and Hong Kong, exhibited the different 
vapor sources of monsoon rainfall, which coincided with the 
atmospheric circulation. 

The isotope values in precipitation in South China show 
an obvious seasonal variation: close to negative in summer 
months and positive in winter months. The significant 
amount effect (Cai et al., 2000; Zhang et al., 2005; Xu et al., 
2008) implies that the precipitation in the rainy season in 
South China mainly originates from the water vapor of the 
low-latitude ocean. Influenced by the marine vapor, the 
heavy isotopes display a slight enrichment with rich precipi-
tation and weak evaporation, so the ratio of stable isotopes in 
precipitation is low. However, in the dry season, affected by 
the continental air mass, the stable isotopes in precipitation 
show a high ratio, and the amount effect rather than the 
temperature effect. A significantly negative correlation is 
found between δ18O and the local temperature, which is a 
special phenomenon of δ18O changes in precipitation of the 
monsoon region at low latitudes (Wei and Lin, 1994; Zhang 
et al., 2006; Zheng et al., 2009).  

However, some researchers have come to different con-
clusions. Pang et al.’s (2006) study in Lijiang at a weather 
scale showed a positive correlation between δ18O and tem-
perature. Regarding δ18O in rainfall of Mengzi, Simao (now 
Pu’er), Tengchong in Yunnan Province, Zhang et al. (2006) 
found that there was a significantly negative correlation rela-
tionship between δ18O and the daily temperature of atmos-
phere at different elevations. 

Regarding spatial distribution, the δ18O values are lower 
in the central part (Guangxi and Guizhou), and higher in the 
surroundings, especially along the east–west direction (Liu 
et al., 2007). The lower values in the center may be caused 
by the southeast and southwest monsoons (Zheng et al., 
2009). In addition, South China is usually affected by ty-
phoons and tropical low pressure, which are related to the 
seasonality of the δ18O values in precipitation (Liu JR et al., 
2007, 2009). If the rainfall brought by a typhoon accounts 
for a large proportion of the monthly precipitation, the spa-
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tial distribution of isotopes can be a record of the movement 
path of the typhoon. 

The spatial distribution characteristics in North China are 
different from those in South China. North China is located at 
mid-latitude in the Northern Hemisphere, where is controlled 
by Siberian High Pressure with frequent cold air masses and 
less precipitation in winter. However, in summer this area is 
also influenced by moisture from the Pacific Ocean (Song et 
al., 1998). In North China, the mean temperature and precipi-
tation generally decrease from south to north. 

Many factors influence δ18O in precipitation in North 
China, such as temperature (including surface temperature 
and dew point temperature), vapor pressure, and wind (in-
cluding wind speed and direction) (Liu JR et al., 2009). 
However, because the isotope fractionation effect mainly 
depends on the temperature of phase transition, with an ex-
tension from coastal land to the interior, the temperature 
becomes an increasingly major factor affecting the δ18O 
values; from south to north, the temperature effect is gradu-
ally enhanced and the amount effect changes from 
year-round to the precipitation period (from June to Sep-
tember) (Liu ZF et al., 2009). The temperature effect ap-
pears as follows: at the mid and low latitudes, the main geo-
graphical factor which controls δ18O in precipitation is ele-
vation, while the latitude is a major factor in inland areas far 
from the sea. In fact, they are both derived from the temper-
ature effect (Liu JR et al., 2009). 
 
5. Meteoric water line and deuterium excess 
 

Isotope fractionation occurs in the evaporation and 

condensation in the water cycle, so the hydrogen and oxy-
gen isotopes in precipitation show a positive relationship. 
This rule can be generally expressed in terms of the equa-
tion δD=8δ18O+10, which is called the global meteoric wa-
ter line (GMWL) equation, or the meteoric water line 
(MWL) of Craig (Craig, 1961). 

The slope of the MWL indicates the type of isotope frac-
tionation. When the slope equals 8, the formation of precipi-
tation is isotopic equilibrium fractionation. If not, it indicates 
that the precipitation results from non-equilibrium fractiona-
tion. Under natural conditions, the factors that affect the 
stable isotope fractionation from vapor formation to 
raindrops are different, so the slope of the MWL is different 
from 8, either greater or less. Several scientists have con-
ducted extensive studies of China’s MWL. Zheng et al. 
(1983) calculated China’s MWL (δD=7.9δ18O+8.2) at an 
earlier stage, after which related research was carried out all 
over China (Table 1). 

In general, the precipitation in the arid and semi-arid re-
gions is low and the evaporation is strong. Because of the 
isotope fractionation caused by imbalance evaporation dur-
ing rainfall, the slope of the MWL equation is lower. With 
high temperature and low humidity, the slope of the MWL is 
lower and the intercept value decreases as the degree of de-
viation increases (Zhang and Yao, 1996). The slope and in-
tercept in the monsoon region in East China are similar, re-
flecting the comparable climatic conditions and vapor 
sources. In areas close to the coast, the MWL coincides with 
the GMWL significantly, which may mean that the GMWL 
reflects the characteristics of hydrogen and oxygen isotopes 
in precipitation in the maritime climate (Cai et al., 2000). 

 
Table 1  Relations between δD and δ18O at several stations in China 

Station MWL Correlation coefficient Reference 

Heihe River δD=4.14δ18O−20.69‰ 0.99 Zhang and Wu, 2009 
Xining δD=6.96δ18O−30.19‰ 0.66 Zhang and Yao, 1996 
Delingha δD=5.86δ18O−27.28‰ 0.57 Zhang and Yao, 1996 
Urumqi δD=7.21δ18O+4.50‰ 0.95 Li et al., 2009 
Yichang δD=8.4δ18O+15‰ 0.97 Zhang and Yao, 1998 
Nanjing δD=8.43δ18O+17.46‰ 0.98 Zhang and Yao, 1998 
Changsha δD=8.47δ18O+15.46‰ 0.99 Zhang and Yao, 1998 
Guiyang δD=8.83δ18O+22.15‰ 0.99 Zhang et al., 2005 
Kunming δD=7.34δ18O+4.18‰ 0.98 Zhang and Yao, 1998 
Tengchong δD=8.71δ18O+19.78‰ 0.99 Wei and Li, 1994 
Guilin δD=8.42δ18O+16.28‰ 0.99 Tu et al., 2004 
Fuzhou δD=8.84δ18O+16.49‰ 0.98 Zhang and Yao, 1998 
Xiamen δD=8.16δ18O+10.68‰ 0.99 Cai et al., 2000 
Hong Kong δD=8.13δ18O+11.39‰ 0.99 Zhang L et al., 2009 
Haikou δD=7.89δ18O+11.04‰ 0.99 Zhang and Yao, 1998 

 
Dansgaard (1953) defined deuterium excess (d= 

δD−8δ18O) based on the MWL, which is mainly influenced 
by the relative humidity in the source area, the sea surface 
temperature (SST), the wind speed, and other conditions. 

The deuterium excess can indicate environmental infor-
mation, including the evaporation process with the equilib-
rium or non-equilibrium, evaporation rates, etc. (Wei and Lin, 
1994). Thus, the deuterium excess is employed as an im-
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portant parameter for tracing water vapor sources. 
Related studies were carried out in China during recent 

years. Wei and Lin (1994), using deuterium excess, confirmed 
that there are different sources of precipitation mass during 
summer monsoon and winter. Based on the variation of d in 
southern and northern parts of the Tibetan Plateau, Tian et al. 
(2001c, 2005) found that the Tanggula Mountains is the de-
marcation line between monsoon areas and non-monsoon 
areas in the Tibetan Plateau, and they concluded that the mid-
dle Himalayas are not only affected by the southwest mon-
soon but also by the westerlies. Based on the relationship be-
tween d and relative humidity at the source region of water 
vapor, Pang et al. (2005) concluded that the monsoon vapor 
from the western Arabian Sea is the main vapor source of 
New Delhi. Recently, by studying the precipitation in the 
southwest of China, Zhang XP et al. (2009) found that the 
seasonal changes of the properties of air masses are an im-
portant factor controlling the seasonality of d. 
 
6. Conclusions and prospects 
 

Although stable isotopes comprise a small proportion in 
natural water, in precipitation they reflect the weather and 
climate characteristics, which is vital in the study of climate 
change and paleoclimate reconstruction. The factors that 
affect the distribution of stable isotopes in precipitation in-
clude the regional environment background and the local 
geographical features. However, for any specific study area, 
one certain factor may play a leading role. 

According to international and domestic research of sta-
ble isotopes in precipitation, several methodological prob-
lems still exist in China as follows: (1) restricted by the cur-
rent technology and equipment, research on stable hydrogen 
isotopes and excess deuterium is limited, compared with 
stable oxygen isotopes; (2) little attention has been paid to 
micro-cycle research of water vapor using stable isotopes, as 
compared with the large-scale vapor cycle; and (3) studies 
on stable isotopes in water vapor are rare and the scale of 
most of the research projects is still relatively small. Global 
change research by isotope techniques has become one of 
the frontiers of international geographical investigation. 
With a series of isotopes projects (e.g., CHNIP), more mon-
itoring sites are being established, which will play a signifi-
cant role in the systematic research of hydrogen and oxygen 
isotopes in precipitation in China. 
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