第34卷第10期

2013年10月

天山乌鲁木齐河源1号冰川区气溶胶水溶性离子变化 特征及来源分析

岳晓英¹ 李忠勤¹² 张明军¹ 周平² 樊晋³

(1. 西北师范大学地理与环境科学学院,兰州 730070; 2. 中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室/天山冰川观测试验站,兰州 730000; 3. 兰州大学大气科学学院,兰州 730000)

摘要: 基于 2007 年 4、8 和 10 月这 3 个时段不同季节的野外考察取样和实验室分析测试 探讨了天山乌鲁木齐河源 1 号冰川 区气溶胶样品中水溶性离子成分的浓度组成、变化特征及其可能来源. 结果表明 ,气溶胶水溶性离子平均浓度为 2.76 μ g·m⁻³ 化学组成以 Ca²⁺、NO₃⁻和 SO₄²⁻为主. Ca²⁺、SO₄²⁻、NH₄⁺、Na⁺、Mg²⁺、Cl⁻在春、夏、秋这 3 个季节的变化趋势与 总离子浓度的变化趋势一致 均为夏季最高、秋季次之、春季最低 而 K⁺与 NO₃⁻ 却呈现出秋季最高、夏季和春季浓度次之的 季节变化特征. 分析认为 ,气溶胶中 Ca²⁺、Na⁺、Mg²⁺、K⁺和 Cl⁻主要可能来自陆源矿物; 而 NO₃⁻和 NH₄⁺则很大程度上以 人为源为主. 并且发现 SO₄²⁻ 可能同时受陆地源与人类活动来源的影响.

关键词:1号冰川; 气溶胶; 水溶性离子; 特征; 来源

中图分类号: X131; X513 文献标识码: A 文章编号: 0250-3301(2013) 10-3764-08

Characteristics and Sources of Soluble Ions in Aerosols from Glacier No. 1 at the Headwater of Urumqi River , Tianshan Mountains , China

YUE Xiao-ying¹, LI Zhong-qin^{1,2}, ZHANG Ming-jun¹, ZHOU Ping², FAN Jin³

(1. College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China; 2. State Key Laboratory of Cryospheric Sciences/Tianshan Glaciological Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 3. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 3. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 4. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 4. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China; 5. College of Atmospher

Abstract: Major soluble ions were measured in 26 aerosol samples collected at Glacier NO. 1 at the headwater of Urumqi River in Tianshan Mountains in April , August and October 2007. The concentration , seasonal change and source of aerosol were analyzed. The results showed that the mean concentration of total soluble major ions of aerosol was 2. 76 μ g·m⁻³ , Ca²⁺ , NO₃⁻ and SO₄²⁻ were the major soluble inorganic ion components. In spring , summer and autumn , the seasonal change of the mean concentration of total soluble inorganic ions was consistent with Ca²⁺ , SO₄²⁻ , NH₄⁺ , Na⁺ , Mg²⁺ and Cl⁻ , the highest concentration was in summer , followed by autumn and spring. While the maximum concentration of K⁺ and NO₃⁻ was observed in autumn , the minimum was in spring. Soluble inorganic ion source characteristics were that: Ca²⁺ , Na⁺ , Mg²⁺ , K⁺ and Cl⁻ were mostly the land source; NO₃⁻ and NH₄⁺ were mainly from the anthropogenic source. SO₄²⁻ was mainly originated from both crustal surface and anthropogenic sources. **Key words**: Urumqi Glacier No. 1; aerosols chemistry; soluble ions; characteristics; sources

大气气溶胶是大气化学成分的重要组成部分, 对地表的辐射平衡、降水的形成、局地空气质量以 及人体健康均有影响,在全球气候变化过程中有着 重要作用^[1~3].因人类活动及自然环境等因素的影 响,不同区域大气气溶胶的浓度及组成均有明显的 地域差异性.高海拔地区的大气气溶胶在反映全球 大气环境质量和大气污染对气候的影响方面有着重 要的意义^[4].因此,自20世纪80年代以来,在世界 很多的高海拔地区都进行了气溶胶本底值的观测研 究工作,引起了广泛关注^[5~8].

天山地区位于中亚干旱半干旱区,亚洲沙尘活动源区范围内,四周被广褒的沙漠、戈壁所包围.

在此处开展大气气溶胶的研究,有助于人们认识亚 洲沙尘源区大气的本底状况以及沙尘气溶胶的高空 及远距离传输机制.近年来该区也开展了一些大气 气溶胶的研究^[9~16],但大都集中在对某一短期时段 的变化特征,或者对单一离子及气雪关系的研究上. 对较长时段气溶胶组成特征的研究还很少,对气溶

收稿日期: 2012-12-20; 修订日期: 2013-05-20

基金项目:国家自然科学基金创新研究群体项目(41121001);国家 自然科学基金项目(41001040 41161012);中国科学院寒 区旱区环境与工程研究所青年人才基金项目 (51Y251B51);国家自然科学基金青年基金项目 (41201065)

作者简介: 岳晓英(1988~) , 女, 硕士研究生, 主要研究方向为干旱 区气溶胶, E-mail: yuexiaoying2011@126.com

胶组成成分及其变化特征的季节性差异研究还很有限,对区域内气溶胶的来源分析也较少开展.因此本文在观测取样和广泛检索分析前人研究的基础上,通过对乌鲁木齐河源1号冰川(以下简称乌源1 号冰川)2007年分季节、分昼夜采集的26个气溶胶样品中水溶性离子变化的分析,旨在探讨该区气 溶胶中水溶性离子的组成及变化特征、反映的大气环境及其可能的来源.

1 研究区概况

乌鲁木齐河源1号冰川(86°49′E 43°06′N)位于 中亚内陆的天山山脉东段乌鲁木齐河源区 是一条山 谷冰川,由东、西两支构成.冰川面积为1.73 km²,长 2.41 km,雪线平均海拔4075 m,冰舌末端海拔 3777 m.冰川周围分布有大片裸露的山体及冰碛沉 积物,富含钠、钙、镁、铁等元素^[17];其四周分布有 广袤的沙漠和戈壁,东临东新疆和西甘肃沙地,以及 内蒙古戈壁高原,西接哈萨克斯坦的穆云库姆沙漠, 北与古尔班通古特沙漠相通,南与塔克拉玛干沙漠相 邻(图1).该区属典型的大陆性气候,西风带在天山 上空起主导作用 3~9月盛行山谷风^[18].观测研究 发现,采样点的年平均气温为-9.1℃,年平均降水量 为440 mm. 乌鲁木齐河流域的下游分布有工业活动 区 如采石场 煤电厂和水泥厂等.

图 1 乌鲁木齐河源 1 号冰川地理位置及周边环境 Fig. 1 Map of the location of Glacier No. 1 at the headwater of Urumqi River

2 样品采集与分析

气溶胶采样点位于乌源1号冰川东支粒雪盆的海拔4100m处.采样工作分别于2007年4月16~
25日8月5~14日,10月20~24日这3个时段分昼夜进行,共采集样品26个.其中4月9个样品(白天6个样品夜间3个样品)8月10个样品(白天7个样品夜间3个样品),10月7个样品(白天4)

个样品 夜间 3 个样品).根据张坤等^[12] 对该地区 气溶胶中 Ca²⁺、Mg²⁺季节特征研究显示 4、8 和 10 月样品季节代表性明显,故本研究用 4、8 和 10 月 分别代表春、夏、秋这 3 个季节.采样一般于早晨 10:00 和晚上 22:00 开始.抽气量介于 2.98~8.35 m³不等,主要取决于天气状况,在有降水和浓雾天 气下不进行采样工作.样品使用美国 New Hampshire大学研发生产的小流量滤器采集,滤膜为 Pall 公司生产的背景浓度较低的 Zeflour Teflon 滤 膜.采样时平均流速为 1.58 m³•h⁻¹ 线流速为 25.3 cm•s⁻¹.采样体积用在线体积流量计测量,并记录 采样开始和结束时的气温及大气压,用于计算流经 滤膜的空气标准体积(标准状态,1个大气压 0°C). 所采集到的气溶胶样品放置于 4°C 恒温避光保存, 直至分析.

样品分析在兰州的冰冻圈科学国家重点实验室 内 100 级超净环境中完成. 样品预处理过程为: 首 先将滤膜用 200 μ L 色谱纯甲醇完全润湿,然后用 25 mL 去离子水提取 ,最后超声波振荡 30 min ,用所 得溶液进行分析. 分析所得结果即所测离子浓度值 除以采样时标准状态下的空气体积,得到大气气溶 胶中的离子浓度值. 分析仪器使用 Dionex-320 型离 子色谱仪 ,具体测定过程参见文献 [19]. 采样及分 析过程中所有操作都采取严格措施,防止可能的污 染. 所测气溶胶离子的检测限分别为(ng•m⁻³): Ca²⁺(0.380),NH₄⁺(0.972),Na⁺(0.322),Mg²⁺ (0.036) ,K⁺(1.248),NO₃⁻(1.674),SO₄²⁻(1.728), Cl⁻(1.740).

3 结果与讨论

3.1 气溶胶离子浓度组成特征

表1给出了采样期间乌源1号冰川大气气溶胶 中主要水溶性离子浓度的统计.所测气溶胶中水溶 性离子平均浓度为2.76 μ g·m⁻³,最大值为14.00 μ g·m⁻³,最小值为0.69 μ g·m⁻³, 所有阴离子中 NO₃⁻ 的浓度最高,为0.96 μ g·m⁻³, SO₄²⁻ 次之,为 0.65 μ g·m⁻³,Cl⁻浓度最低,仅为0.10 μ g·m⁻³. 而 所有阳离子中,Ca²⁺浓度最高,为0.71 μ g·m⁻³,其 次是NH₄⁺,为0.12 μ g·m⁻³.所测阳离子浓度大小 依次为:Ca²⁺>NH₄⁺>Na⁺>K⁺>Mg²⁺,与元素地 壳中的丰度顺序Ca²⁺>Na⁺>K⁺>Mg²⁺相同,这 意味着该区大气气溶胶中水溶性阳离子组成以陆源 物质为主,与气溶胶微观形貌特征研究的结果一 致^[14],一定程度的反映了冰川区大气环境受陆地源 影响很大. Ca²⁺、NO₃⁻和 SO₄⁻质量浓度占总水溶 性离子浓度的 85% ,为乌源 1 号冰川大气气溶胶水 溶性离子的主要组成成分.

表 1 乌源 1 号冰川大气气溶胶中水溶性离子浓度 / $\mu g \cdot m^{-3}$

Tabl	le 1 Concentr	ations of soluble	e inorganic ions	of aerosol coll	ected at Glacie	r No. 1 at the l	headwater of Ui	umqi River/μ	.g•m ⁻³
项目	Ca ^{2 +}	Na ⁺	$\mathrm{NH_4^+}$	K *	Mg ² +	SO_4^2 -	NO ₃	Cl -	$\sum_{i}^{-} + \sum_{i}^{+}$
平均值	0.71	0.09	0.12	0.09	0.04	0.65	0.96	0.10	2.76
最小值	0.20	0.01	0.00	0.03	0.01	0.14	0.07	0.02	0.69
最大值	2.85	0.34	0.71	0.31	0.21	5.70	3.38	0.61	14.00
标准差	0.58	0.09	0.14	0.07	0.05	1.08	0.95	0.14	2.67

3.2 气溶胶离子浓度的变化特征

在较早的研究中,对气溶胶水溶性离子的昼夜 变化特征和可能的影响因素进行了分析讨论,结果 发现^[16],1号冰川气溶胶夜间平均离子浓度高于白 天浓度,主要的化学离子中,除 NO₃⁻在全年中的平 均离子浓度表现为白天高于晚上外,其余离子的平 均离子浓度表现为白天高于晚上外,其余离子的平 均浓度均是夜间高于白天.区域风向的日变化是控 制气溶胶浓度昼夜变化的主要影响因素,相比之下 大气环流的影响则相对较弱.所有的气溶胶昼夜变 化事件中,Ca²⁺的昼夜变化最为明显,离子浓度的高 值事件多出现在晚上,而其余离子在采样时段内的 昼夜变化事件表现则不尽一致,无明显规律^[16].这 些结果也反映了冰川区昼夜受山风和谷风影响下大 气状况的明显差异.

表2列出了春、夏、秋这3个季节所测主要化 学离子的平均浓度.本研究中不同季节的样品均具 有较好的季节代表性.总体上,水溶性离子浓度夏 季最高 秋季次之 春季最低.夏季总水溶性离子平 均浓度为3.64 μg•m⁻³ 约为春季的2.5倍.从单一 离子浓度的季节变化特征看,各离子表现出了不同 的季节变化特征. Ca^{2+} 、 SO_4^{2-} 、 NH_4^+ 、 Na^+ 、 Mg^{2+} 、 Cl⁻均不同程度地呈现出夏季,秋季,春季浓度依次 降低的趋势. 其中 , Ca^{2+} 、 Mg^{2+} 季节变化明显; NH_{4}^{+} 、 Na^{+} 、 Cl^{-} 夏季与秋季浓度相差不大,春季较 低; SO²⁻则为春、秋季接近,夏季浓度较高. K⁺与 NO_3^- 呈现出秋季 > 夏季 > 春季的变化特征. 同时, 为了进一步探究各离子季节变化的原因,本研究采 用离子的峰值浓度,结合离子的季节变化趋势进行 分析(图2). 峰值浓度的确定原则为:首先假定峰 值必须大于离子的平均值;其次如果有连续的值大 于平均值 则假定峰值取最高值; 再次两个相邻假 定峰值的差大于或接近相应离子的标准差^[7].分析 得出: Ca^{2+} 、 SO_4^{2-} 和 K⁺有4个峰值,分别出现在4 月24日、8月9日、8月12日和10月21日; Na⁺、 Mg²⁺和 Cl⁻有3个峰值,出现在8月9日、8月12 日和 10 月 21 日; NO₃⁻ 有 5 个峰值, 分别是 4 月 24 日、8月9日、8月12日、10月22日和10月24 日; NH[↓] 的峰值主要集中在秋季 ,10 月 20 日、10 月22日和10月23日春夏季除了8月12日外峰 值不明显.

Table 2 Seasonal average concentrations of aerosol soluble inorganic ions/ μ g•m ⁻³									
项目	Ca ² +	Na +	NH_4^+	K *	Mg ^{2 +}	SO_4^2 -	NO ₃	Cl -	$\sum_{i=1}^{n-1} + \sum_{i=1}^{n+1}$
春季	0.45	0.05	0.06	0.05	0.02	0.34	0.33	0.04	1.35
夏季	0.93	0.12	0.15	0.09	0.07	1.09	1.06	0.13	3.64
秋季	0.71	0.10	0.14	0.13	0.04	0.41	1.61	0.13	3.27
平均值	0.71	0.09	0.12	0.09	0.04	0.65	0.96	0.10	2.76

表2	2	乌鲁木齐河源1	号冰川区水	溶性离	子	季节	5平	均浓度) E	µg•ı	m^{-3}	

 Ca^{2+} 和 Mg^{2+} 变化趋势相似,峰值对应良好,表 明二者有相同的来源.根据乌源1号冰川雪冰记录 的研究显示, Ca^{2+} 和 Mg^{2+} 的浓度与粉尘浓度有着很 好的相关性^[20],而该区位于亚洲粉尘源区,春、夏 季为该区沙尘活动的活跃期,秋季次之^[21].故推断 气溶胶中 Ca^{2+} 和 Mg^{2+} 的浓度夏季最高可能与此时 粉尘活动频繁有关. Na^{+} 和 Cl^{-} 浓度均呈现出夏季 最高,春季最低的特征,可能是由于夏季温度较高,

山区周围盐矿强烈蒸发所致.而二者峰值浓度与 Ca²⁺的良好对应,表明沙尘活动对其浓度也有一定 影响.SO₄²⁻浓度夏季明显高于春、秋季,且与 Ca²⁺ 峰值对应良好.这一方面可能是由于春夏季冰川周 围沙尘活动频繁,强度大,沙尘中大量 SO₄²⁻的输入 所致.另一方面,与温度湿度的季节性差异有关, SO₄²⁻主要来自于 SO₂转化,夏季高温高湿的大气环 境为 SO₂的高效氧化提供了条件.K⁺浓度变化呈

"D'"N"分别代表白天和夜晚 图 2 主要离子浓度季节变化趋势

Fig. 2 Seasonal changes of the concentration of major soluble inorganic ions

现出秋季最高,夏季次之,春季最低的特征. 鉴于 K⁺是生物质燃烧的示踪物^[22],且中亚哈萨克斯坦 东部的草原大火在1号冰川雪层中已有记录^[23]. 推测 K⁺在秋季浓度较高可能与此时生物质燃烧频 繁有关. 但与 Ca²⁺、Na⁺和 Cl⁻峰值的良好对应也 表明 K⁺还受沙尘及周围盐矿的影响.

NO₃ 浓度变化也呈现出秋季最高,夏季次之, 春季最低的趋势,分析认为主要与它在各季节来源 的变化和气粒转化程度有关. Zhao 等^[11]和王圣杰 等^[24]通过对乌源1号冰川雪冰中 NO₃ 的研究发 现,该区人类活动对 NO₃ 浓度贡献很大. 夏秋季冰 川区周围人类活动和牧民放牧频繁 NO₃ 的来源明 显增加 但秋季温度较低 低温有利于气态 HNO₃ 向 颗粒态的 NH_4NO_3 转化 ,且 NH_4NO_3 在低温下不易 分解^[25] ,导致 NO₃⁻ 浓度秋季最高 ,夏季较低. 春季 离子来源的相对减小可能是造成该季 NO3 浓度最 低的主要原因. 此外 春、夏季 NO_3^- 与 Ca^{2+} 峰值对 应明显,推测可能是沙尘颗粒为 NO₃ 的气粒转化提 供介质的结果. NH⁴ 夏秋季浓度较高,春季最低. 除了受夏秋季来源明显增多的影响外,与 NO₃ 在夏 季的高效转化也有关系.而 NH₄⁺ 在秋季峰值明显, 与 Ca^{2+} 峰值没有明显的对应关系,则表明 NH_{4}^{+} 与 Ca²⁺有着不同的来源,可能主要源于周围人类活动的输入,例如秸秆薪柴的燃烧,动物尸体及其排泄物的分解等.

此外 本研究还与 1996 年 5~6 月在同一采样 点采集的气溶胶水溶性离子的数据进行了比较^[9] (表3),旨在发现乌源1号冰川大气气溶胶水溶性 离子组成的年际变化特征.研究发现,水溶性离子 的平均浓度 1996 年大于 2007 年 离子顺序也发生 了明显变化. 阳离子顺序 1996 年为 Ca²⁺ > NH₄⁺ > $Na^+ > Mg^{2+} > K^+$ 2007 年为 $Ca^{2+} > NH_4^+ > Na^+ > K^+$ > Mg²⁺ 而阴离子顺序 1996 年为 SO₄²⁻ > Cl⁻ > NO₃⁻, 2007 年为 NO₃⁻ > SO₄²⁻ > Cl⁻. 且从单个离子的浓度 看 除 NO₃⁻ 之外其余离子浓度 1996 年均比 2007 年 的高. 另外 各离子在相应年份水溶性离子中所占质 量分数显示(图3) NO₃⁻和K⁺所占质量分数2007年 较 1996 年有所增加 NO_3^- 增加尤为明显; 而 Ca^{2+} 、 NH₄⁺、Na⁺、SO₄²⁻、Mg²⁺和 Cl⁻ 2007 年较 1996 年均 有下降 Cl^- 、 Ca^{2+} 下降突出. 分析原因主要有: ①采 样时间的差异. 研究表明,沙尘活动携带的物质输入 是乌源1号冰川大气气溶胶的主要来源^[20].而1996 年采样工作于春末夏初(5~6月)进行,正值新疆地 区的沙尘活动频发期 2007 年则分别在 4、8 和 10 月

完成 采样后期沙尘活动强度有所减弱. ②排放源强度的变化. 已有研究显示 ,该区人类活动造成的物质 来源对 NO₃⁻ 贡献很大^[24]. 自 1996 年以来 ,该区人类 活动越来越频繁 ,农牧业活动排放的 NO₃⁻ 也逐年增 加. 此外 周边城市随着经济的发展 机动车及工业 排放量的增加 也是造成 NO₃ 浓度 2007 年高于 1996 年的一个重要原因. 这也一定程度上反映出近 10 年 来周边地区能源结构的改变.

表3	1996 年和 2007 年冰川区水溶性离子平均浓度 / μg•m ⁻³
----	---

Table 3 Average concentrations of aerosol soluble inorganic ions between 1996 and $2007 / \mu g \cdot m^{-3}$									
采样时间	Cl -	NO ₃ ⁻	SO_4^2 -	Na ⁺	NH_4^+	K *	Mg ^{2 +}	Ga ²⁺	$\sum_{i}^{+} + \sum_{i}^{-}$
1996 年	0.35	0.61	1.22	0.25	0.27	0.06	0.08	1.36	4.19
2007 年	0.10	0.96	0.65	0.09	0.12	0.09	0.04	1.71	2.76

3.3 大气气溶胶的来源分析

本研究采用因子分析法分析各离子的主要来 源.因子分析是一种多元统计方法.Blifford 等^[26] 最早用该方法研究了美国 30 多个城市的气溶胶来 源.此后,国内外多位学者先后采用该方法对各地的 气溶胶来源进行分析,并取得了满意的结果^[27,28]. 目前,因子分析法已经成为气溶胶源解析的一种有 效方法.其基本思路为;通过分析各因子(气溶胶 来源)对各变量(离子)的载荷,确定主要因子,并依 据载荷离子的化学属性判断气溶胶的来源.方法的 详细介绍见文献[29].本研究中因子分析法中公因 子数的确定原则为特征根大于1,结果经过方差最 大正交旋转.

由表4 所示的因子分析结果得出:8 种离子可 归结为2 个因子,因子1 解释方差为74.20%,在 Ca^{2+} 、 Na^+ 、 Mg^{2+} 、 K^+ 、 Cl^- 这5 种离子上有较高载 荷;因子2 解释方差为13.46%,在 NO_3^- 、 NH_4^+ 、 SO_4^{2-} 这3 种离子上载荷较大.研究认为,这两个因 子分别代表陆地源和人为源.主要来自以下分析.

(1) 多项研究表明 ,Ca²⁺和 Mg²⁺的浓度与粉尘 浓度有着很好的相关性,可作为粉尘的替代指 标^[30,31].而天山四周沙漠戈壁广布,春夏季正是这

表4 因子分析结果

Table 4	Loading for the fa	ctor analysis of eig	ght ions
离子	因子1	因子2	提取率
Cl -	0.960	0. 153	0. 945
Na ⁺	0.943	0.260	0.958
Mg ^{2 +}	0.822	0.413	0.846
Ga ^{2 +}	0.863	0.414	0.917
K *	0. 793	0.445	0.826
$S0_4^2$ -	0. 591	0.676	0.806
NO_3^-	0.245	0.855	0.792
NH_4^+	0.252	0. 928	0. 924
特征值	5.936	1.077	_
解释方差/%	74.20	13.46	—
累计方差/%	74.20	87.67	—

些地区风沙活动的活跃期,无论从频次还是强度上 都达到最大^[21],且沙尘中富含 CaCO₃、CaSO₄、NaCl 等物质^[32].这就为天山地区气溶胶矿质离子的输 入提供了动力条件和物质基础.其次,乌源1号冰 川周围分布的大量裸露山体及冰碛物中以角闪石、 绿帘石、石英、长石为主,含有大量 Ca、Mg、Na等 元素^[17]在局地扬尘的作用下可将这些物质输入至 大气中,成为冰川区矿质离子的局地来源.此外,天 山山区周边湖沼分布较多(艾比湖、阿拉湖、伊塞 克湖等),盐矿丰富,在降水少,气温高,气候干燥的 条件下,富含 Na、Cl、K 等物质的盐粒被蒸发到空 气中,也会随着沙尘的传输而到达冰川表面^[33].

(2) 一般认为,气溶胶中的 NO₃⁻ 很大部分是由 海盐粒子,高空闪电、机动车尾气,生物及化石燃料 的燃烧等过程产生的 NO_x 的二次反应生成,多来源 于人类活动^[33];而 NH₄⁺ 通常认为来自于生物体的 代谢以及包括化肥的使用,工业、机动车排放在内 的人类活动的释放^[34]. 乌源 1 号冰川邻近人类活 动区,自河谷而下西南方向约 40 km 处的后峡镇建 有水泥厂,火力发电厂等企业;在距冰川东南 2 km 处的 216 国道,是由北疆通向南疆最近的一条通道, 运输繁忙.大西沟 3~9 月白天盛行的山谷风^[18],

很有可能将河谷中的污染物带至冰川区. 且新疆维 吾尔自治区的首府乌鲁木齐市距离冰川也仅有 120 km 之遥,在过去的 20 a 间该市的空气污染相当严 重 因此在适当的气象条件下 也不排除将污染物传 输到冰川区的可能. 而且根据 Lee 等^[35] 对乌源1号 冰川冰芯记录的研究显示,该冰川已经受到人类活 动的影响,且乌鲁木齐市对其贡献很大. 其次,新疆 是我国重要的牧区之一,畜载量高,夏秋季节,人类 农牧活动频繁 秸秆燃烧和居民薪柴燃烧等生物质 的燃烧 动物排泄物及尸体的分解 化肥的使用等都 会产生 NO, 和 NH, 再次,天山地区属于典型的大 陆性气候区 西风带在天山上空起主导作用 西风环 流途经中西亚及新疆的多个工业区,沿途也不断有 NO_3^- 、 NH_4^+ 以及 SO_4^{2-} 输入. 除此之外 由于乌源 1 号冰川海拔较高 高空闪电也可能是 NO, 的一个来 源 还有待进一步研究.

(3) SO₄⁻ 在因子 1 和因子 2 上均有较大载 荷,表明它同时受陆地源和人为源的影响,既来 自陆源矿物的输入,例如亚洲粉尘中含有大量的 矿物盐类 CaSO₄ 等;也来自人为含硫污染物的排 放,例如燃料(煤炭、石油等)燃烧,工业的排 放等.

同时,为了进一步验证1号冰川区大气气溶胶 的可能来源 本研究利用 NOAA 提供的 HYSPLIT 气 团后向轨迹传输模型 结合 NCEP 全球再分析数据, 以1号冰川采样点(86°49'E 43°06'N)为气团运动 的终点 在海拔4 100 m处模拟反向计算了采样期间 到达1号冰川气溶胶采样点的气团传输轨迹(3 d). 图 4 是 4、8 和 10 月气团后向轨迹分析的典型例 子. 从中可以反映: 乌源1号冰川主要受来自西方 及西北方向气团的控制 [图 4(a)、4(e)、4(f)],所 经过的地区多为沙漠广布的中西亚干旱区,例如卡 拉库姆沙漠 莫因库姆沙漠 萨雷耶西克阿特劳沙漠 等地. 因此气团携带了大量的陆源沙尘,成为天山 地区气溶胶远源输入的主要源地. 但也有一部分气 团 例如图 4(d),主要经过的地区为人类活动密集 区 例如伊宁、克拉玛依、石河子等,这些区域工业 化活动较多 故这些地区的人为污染物也可能会随 着气团的传输而到达高海拔冰川表面,是完全可能 存在的.

4 结论

(1) 天山乌鲁木齐河源 1 号冰川大气气溶胶水 溶性离子平均浓度为 2.76 μ g·m⁻³,以 Ca²⁺、NO₃⁻ 和 SO₄²⁻为主,其质量分数占总水溶性离子的 85%.

(2) 天山乌鲁木齐河源1号冰川大气气溶胶水 溶性离子的变化特征为:春、夏、秋这3个季节 Ca²⁺、SO₄²⁻、NH₄⁺、Na⁺、Mg²⁺和 Cl⁻的变化趋势 与总离子浓度的变化趋势一致,均为夏季最高、秋 季次之、春季最低;而 K⁺与 NO₃⁻却呈现出秋季最 高、夏季和春季浓度次之的季节变化特征.这主要 与各离子在不同季节来源的差异以及理化特征的分 解转化有关.

(3) 探讨了天山乌鲁木齐河源1号冰川大气气 溶胶水溶性离子的来源: Ca²⁺、Na⁺、Mg²⁺、K⁺和 Cl⁻主要可能来自陆源矿物;而NO₃⁻和NH₄⁺则很 大程度上以人为源为主.而且发现 SO₄²⁻可能同时 受陆地源与人类活动来源的影响.

 ☆谢:本研究是天山冰川观测试验站开展的雪 冰现代过程研究项目的一部分,是在全体观测和研 究人员集体努力下完成的. 谨此对参加本研究的每 一位观测人员以及项目组人员表示衷心感谢! 参考文献:

- [1] Liu X G , Cheng Y F , Zhang Y H , et al. Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign [J]. Atmospheric Environment , 2008 , 42(7): 1525–1536.
- [2] Geresdi I, Meszaros E, Molnar A. The effect of chemical composition and size distribution of aerosol particles on droplet formation and albedo of stratocumulus clouds [J]. Atmospheric Environment, 2006, 40(10): 1845–1855.
- [3] Han L H , Zhuang G S , Cheng S Y , et al. The mineral aerosol and its impact on urban pollution aerosols over Beijing , China
 [J]. Atmospheric Environment , 2007 , 41(35) : 7533-7546.
- [4] 温玉璞,徐晓斌,汤洁,等.青海瓦里关大气气溶胶元素富集 特征及其来源[J].应用气象学报,2001,12(4):400-408.
- [5] Yalcin K , Wake C P , Dibb J E , et al. Relationships between aerosol and snow chemistry at King Col , Mt. Logan Massif , Yukon , Canada [J]. Atmospheric Environment ,2006 ,40(37) : 7152–7163.
- [6] Mishra V K, Kim K, Hong S M, et al. Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula [J]. Atmospheric Environment, 2004, 38(24): 4069-4084.
- Ming J , Zhang D Q , Kang S C , et al. Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest) [J]. Journal of Geophysical Research , 2007 , 112: D15307 , doi: 1029/2007JD008618.
- [8] Colin J L , Lim B , Herms E , et al. Air-to-snow mineral transfer-

crustal elements in aerosols , fresh snow and snowpits on the Greenland ice sheet [J]. Atmospheric Environment , 1997 , 31 (20) : 3395–3406.

- [9] Sun J Y, Qin D H, Mayewski P A, et al. Soluble species in aerosol and snow and their relationship at Glacier 1, Tien Shan, China [J]. Journal of Geophysical Research, 1998, 103(D21): 28022-28027.
- [10] 张明军,周平,李忠勤,等.天山乌鲁木齐河源1号冰川大 气气溶胶和新雪中可溶性离子关系研究[J].地理科学, 2010,30(1):141-148.
- [11] Zhao Z , Li Z , Edwars R , et al. Atmosphere-to-snow-to-firm transfer of NO₃⁻ on Urumqi glacier No. 1 , eastern Tien Shan , China [J]. Annals of Glaciology , 2006 , 43(1): 239–244.
- [12] 张坤,李忠勤,王飞腾,等.天山乌鲁木齐河源1号冰川积 累区气溶胶和表层雪中可溶性矿物粉尘的变化特征及相互 关系——以Ca²⁺、Mg²⁺为例[J].冰川冻土,2008,30(1): 113-118.
- [13] 张宁宁,李忠勤,何元庆,等. 乌鲁木齐河源1号冰川积累 区气溶胶和表层雪中 SO₄²⁻ 的季节变化及成因分析[J].冰 川冻土,2009,**31**(1): 62-67.
- [14] Li Z Q, Zhao S H, Edwards R, et al. Characteristics of individual aerosol particles over ürümqi Glacier No. 1 in eastern Tianshan, central Asia, China [J]. Atmospheric Research, 2011, 99(1): 57-66.
- [15] Zhao S , Li Z , Zhou P. Ion chemistry and individual particle analysis of atmospheric aerosols over Mt. Bogda of eastern Tianshan Mountains , Central Asia [J]. Environmental Monitoring and Assessment , 2010 , 180(1-4): 409-426.
- [16] 周平,张明军,李忠勤,等.天山乌鲁木齐河源1号冰川气 溶胶可溶性离子昼夜变化研究[J].冰川冻土,2009,31 (3):474-480.
- [17] 骆鸿珍. 天山乌鲁木齐河源 1 号冰川的水化学特征 [J]. 冰 川冻土, 1983, 5(2): 55-64.
- [18] 张寅生,康尔泗,刘潮海.天山乌鲁木齐河流域山区气候特征分析[J].冰川冻土,1994,16(4):333-341.
- [19] 赵中平,李忠勤.离子色谱法测定大气气溶胶中的可溶性离子[J].现代科学仪器,2004,(5):46-49.
- [20] 董志文,李忠勤,王飞腾,等.天山乌鲁木齐河源冰川积雪 内不溶粉尘特征:沙尘与非沙尘活动季节的比较[J].环境 科学,2009,30(6):1818-1825.
- [21] 霍文. 新疆沙尘暴天气演变特征及成因分析[D]. 乌鲁木齐: 新疆师范大学, 2011.
- [22] Pio C A , Legrand M , Alves C A , et al. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period [J]. Atmospheric Environment , 2008 , 42 (32): 7530– 7543.
- [23] 王圣杰,张明军,王飞腾,等.天山东部雪冰中硝酸根浓度 对中亚生物质燃烧的响应研究[J].环境科学,2011,32 (2):338-344.
- [24] 王圣杰,张明军,王飞腾.天山乌鲁木齐河源区表层雪中含 氮离子季节变化特征[J].环境化学,2011,30(8):1445-1450.

- [25] 胡敏,赵云良,何凌燕,等.北京冬、夏季颗粒物及其离子 成分质量浓度谱分布[J].环境科学,2005,26(4):1-6.
- [26] Blifford I , H Meeker G O. A factor analysis model of large scale pollution [J]. Atmospheric Environment , 1967 , 1 (2): 147– 158.
- [27] Salvador P , Artíñano B , Alonso D G , et al. Identification and characterization of sources of PM₁₀ in Madrid (Spain) by statistical methods [J]. Atmospheric Environment , 2004 , 38 (3): 435-447.
- [28] 徐国杰,陈立奇,张远辉,等.中国第26次南极科学考察航 线上空水溶性气溶胶化学成分特征研究[J].极地研究, 2011,23(2):98-107.
- [29] 王明星. 用因子分析法研究大气气溶胶的来源[J]. 大气科 学,1985,9(1): 73-81.
- [30] Dong Z W , Li Z Q , Wang F T , et al. Characteristics of atmospheric dust deposition in snow on the glaciers of the eastern

Tian Shan , China [J]. Journal of Glaciology , 2009 , **55**(193): 797–804.

- [31] 刘臻,祁建华,王琳,等.青岛大气气溶胶水溶性无机离子 研究:季节分布特征[J].环境科学,2012,33(7):2180-2190.
- [32] Okada K , Kai K. Atmospheric mineral particles collected at Qira in the Taklamakan Desert , China [J]. Atmospheric Environment , 2004 , 38(40): 6927-6935.
- [33] 侯书贵. 乌鲁木齐河源区大气降水的化学特征[J]. 冰川冻 土,2001,23(1): 80-84.
- [34] 徐昶. 中国特大城市气溶胶的理化特性、来源及其形成机制 [D]. 上海: 复旦大学, 2010.
- [35] Lee X Q , Qin D H , Jiang G B , et al. Atmospheric pollution of a remote area of Tianshan Mountain: Ice core record [J]. Journal of Geophysical Research , 2003 , 108 (D14): 4406 , doi: 10.1029/2002JD0021821.