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Abstract:

Snowmelt water is an important freshwater resource in the Altay Mountains in north-west China; however, warming climate and
rapid spring snowmelt can cause floods that endanger both public and personal property and safety. This study simulates
snowmelt in the Kayiertesi River catchment using a temperature index model based on remote sensing coupled with high-
resolution meteorological data obtained from National Centers for Environmental Prediction (NCEP) reanalysis fields that were
downscaled using the Weather Research Forecasting model and then bias corrected using a statistical downscaled model.
Validation of the forcing data revealed that the high-resolution meteorological fields derived from the downscaled NCEP
reanalysis were reliable for driving the snowmelt model. Parameters of the temperature index model based on remote sensing
were calibrated for spring 2014, and model performance was validated using Moderate Resolution Imaging Spectroradiometer
snow cover and snow observations from spring 2012. The results show that the temperature index model based on remote
sensing performed well, with a simulation mean relative error of 6.7% and a Nash–Sutcliffe efficiency of 0.98 in spring 2012 in
the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt run-off was
calculated for spring 2012 in the basin. In the study catchment, spring snowmelt run-off accounts for 72% of spring run-off and
21% of annual run-off. Snowmelt is the main source of run-off for the catchment and should be managed and utilized effectively.
The results provide a basis for snowmelt run-off predictions, so as to prevent snowmelt-induced floods, and also provide a
generalizable approach that can be applied to other remote locations where high-density, long-term observational data are
lacking. Copyright © 2016 John Wiley & Sons, Ltd.

KEY WORDS high mountain hydrology; snow water equivalent distribution; Weather Research Forecasting model; positive air
temperature; snowmelt water volume
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INTRODUCTION

Global warming and other human-induced environmental
changes are having increasingly severe impacts on the
cryosphere (IPCC, 2013). Snow cover is an important
component of the cryosphere, and alpine snow distribu-
tion and its subsequent melt can dominate local and
regional hydrology in mountainous regions. In the short
term, faster snowmelt will lead to an increased risk of
local flooding, avalanches and other snow disasters in
orrespondence to: Xuejiao Wu, State Key Laboratory of Cryosphere
ences, Cold and Arid Regions Environmental and Engineering
search Institute, Chinese Academy of Sciences, Lanzhou 730000,
ina.
ail: xjwu@lzb.ac.cn

pyright © 2016 John Wiley & Sons, Ltd.
mountainous areas during spring. These events threaten
public and private property and the safety of citizens. In
north-west China, snowmelt floods occur mainly in the
Altay and Tacheng areas, and along the northern slopes of
the Tianshan Mountains in north Xinjiang (Shen et al.,
2013). An understanding of how snow water resources
are distributed throughout high mountain basins is
therefore critical for water resource planning in these
regions. Ground-based observations of catchment-scale
snow water equivalent (SWE) are challenging because of
difficult access and avalanche danger (Dozier and Painter,
2004). Available point-based observations have limited
use in snowmelt predictions and are outpaced by remote
sensing and modelling (Rice and Bales, 2010). Coupling
climate and snowmelt models has great potential for
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Figure 1. Map showing the geographic characters and location of the
study basin
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calculating the distribution of SWE at high spatial
resolution and for making reliable snowmelt predictions.
Snowmelt simulation can help understand and effec-

tively make use of snowmelt water resource. Current
snowmelt models can generally be classified into two
categories: empirical temperature index models (TIMs)
(Reeh, 1989; Hock, 1999), such as the degree-day model,
and physically based energy balance models (Ma et al.,
1991). Energy balance models use physically based
calculations of heat exchanges without a strong regional
dependence. However, they require accurate data and
include complex parameterization processes. TIMs re-
quire fewer static parameters and less complex data
compared with energy balance models (Ohmura, 2001).
Also, because air temperature is generally the most
readily available data, TIMs have been widely used for
modelling ice melt/snowmelt and ice dynamics, and for
climate sensitivity studies (Hock, 2003) in areas such as
Greenland, northern Europe and the Qinghai–Tibet
Plateau (Gao et al., 2012; Box, 2013; Matthews et al.,
2015). As such, TIMs are also frequently applied in
sparsely monitored basins, have been shown to provide
reliable snowmelt estimates (Jost et al., 2012), and are
suitable for use in catchment-scale research (Irvine-Fynn
et al., 2014).
Spatial meteorological forcing data play a major role in

snowmelt models and other distributed hydrological and
ecological models (Pan et al., 2012). Meteorological data
gathered by national organizations are commonly used as
forcing data for snowmelt run-off or hydrological models.
Another approach is to interpolate meteorological data
from an array of weather stations to force a distributed
model. However, weather station data are restricted by the
locations of weather stations. A new method has been
proposed, involving coupling or using climate model
outputs as forcing data for hydrological and ecological
models (Zhao et al., 2009). The Weather Research
Forecasting (WRF) model has been modified for
application over longer timescales than the typical,
numerical weather model. As boundary conditions, it
can use either reanalysis fields, to simulate the observed
past, or global climate model output fields, to simulate the
future. Here, we use WRF in retrospective mode with
National Centers for Environmental Prediction (NCEP)
boundary conditions to produce high-resolution 5-km
gridded meteorological fields over the study area for
spring 2012. WRF output fields are then bias corrected
and spatially disaggregated to 1 km using a statistical
model, before being used as input to the TIM to simulate
snowmelt processes in a river basin in the Altay
Mountains in north-west China.
In the snowmelt model, remote sensing data also play a

key role in parameterization to minimize the number of
parameterizations and make the model easily applicable
Copyright © 2016 John Wiley & Sons, Ltd.
to data-poor regions. The aim of this study is to test the
ability of the NCEP-based downscaled high-resolution
meteorology data for use as meteorological forcing data
in mountainous areas, and to assess the simulation
capacity of the improved temperature index snowmelt
model based on remote sensing data. It is hoped that the
results will improve our understanding of spring SWE
distribution and snowmelt process in mountainous
regions and provide a basis for the prevention of
snowmelt-induced flooding in spring. It is also hoped
that TIM based on remote sensing data could be
considered for wide use in data-poor regions.
METHODS

This section begins with a description of the study area
and available stations with meteorological and hydrolog-
ical measurements. This is followed by an outline of the
snowmelt model and the production of meteorological
forcing data. The parameters incorporated into the
snowmelt model are introduced, then model evaluation
methods are described.

Study site and station descriptions

The study area is located in the Kayiertesi River basin in
the Altay Mountains in northern Xinjiang. The basin is the
headwaters of the Eerqisi River (Figure 1). The climate of
this region is influenced by westerly airflow, and most
annual precipitation falls as snow, which creates a thick
and stable winter snow cover. The drainage area of the
basin, calculated using digital elevation model data at high
spatial resolution (30×30m), is 2350km2, and the altitude
ranges from 1159 to 3846m above sea level (a.s.l.).
Hydrol. Process. 30, 3967–3977 (2016)



3969SNOWMELT SIMULATIONS IN A RIVER BASIN IN THE ALTAY MOUNTAINS
The area has a cool climate with a mean annual
temperature of 3.0 °C for the period 1962–2012.
Snowmelt begins in March (monthly mean temperature
of �6.3 °C). Mean annual precipitation is 190.7mm for
1962–2012, and the two months with the lowest mean
precipitation are February (8.1 mm) and March
(10.5mm).
Our observation site is located at Kuwei Hydrologic

Station at the outlet of the basin (47°20′N, 89°41′E) at an
elevation of 1370m a.s.l. Field measurements at the site
include meteorological measurements, snow properties,
frozen soil monitoring and so on. Meanwhile, meteoro-
logical measurements include air temperature (±0.4 °C),
relative humidity (±2%) (HMP45C probe, Vaisala,
Helsinki, Finland) and wind speed (±0.3ms�1) and
direction (propvane 05103 anemometer, RM Young,
Traverse City, Michigan) at a height of 3m above the
ground surface.
Snow property measurements include snow depth

(±1 cm) (Campbell SR50A snow depth sensor, Campbell
Scientific, USA), SWE (snow pillow, 10389, Austria) and
layered snow temperature (±0.5 °C) (Campbell SI-111
infrared radiometer, Campbell Scientific, USA). Solid
precipitation was measured in millimetres of water
equivalent (±0.1%) using a Geonor T-200B accumulative
weighing bucket precipitation gauge without heating
(Campbell Scientific, USA). All sensors were connected
to a data logger (CR1000, Campbell Scientific, USA), and
the automatic weather station (AWS) recorded the half-
hourly mean of measurements taken every 10 s. Other
parameters such as layered soil temperature and soil
moisture were also monitored. Four new net radiometers
(±1%) (CNR4, Campbell Scientific, USA) were installed
at the station in September 2013 to monitor incident and
reflected shortwave radiation, and incoming and outgoing
longwave radiation.

Description of the snowmelt model

Traditional degree-day models only consider air
temperature, yet snowmelt processes are affected by
many other factors. Enhanced TIMs have therefore been
developed and widely applied because of their limited
demands for in situ data and their high temporal and
spatial resolution simulations of melt rates (Hock, 1999;
Pellicciotti et al., 2005). The following model has been
shown to perform well and computes melt as the sum of
two components (Pellicciotti et al., 2005):

M ¼ TFT þ SRF 1� αð ÞG T > TT
0 T ≤ TT

�
(1)

where T is the cumulative positive average daily
temperature over a given time, α is albedo and G is
Copyright © 2016 John Wiley & Sons, Ltd.
incoming shortwave radiation (Wm�2). Calibrations of α
are based on time after the snowfall event and
accumulated daily maximum positive temperature. In-
coming shortwave radiation was modelled using a
parametric model for clear-sky conditions based on
Corripio (2003). TF and SRF are empirical coefficients,
being the temperature factor and shortwave radiation
factor, expressed in millimetre per hour per degree
Celsius and square metre millimetre per Watt per hour,
respectively. These two coefficients need to be optimized
using meteorological data-calculated hourly energy bal-
ance melt rates for the entire melt period. TT is a threshold
temperature below which no melting occurs.
The enhanced TIM is a sound approach, but there are

many introduced parameters. Air temperature and net
radiation were the key parameters considered in the
modified TIM based on remote sensing data. Fieldwork
and observations in the Kayiertesi River basin in recent
years have shown that radiation, terrain, elevation and
aspect all affect the snowmelt rate. In general, elevation
directly affects temperature and indirectly affects snow-
melt; terrain and aspect mainly affect the amount of
radiation received by the Earth’s surface. Based on
measured field data and AWS observations, this study use
a modified temperature index method coupled with high-
resolution NCEP-based meteorology dynamically down-
scaled and spatially disaggregated to 1 km and remote
sensing data to model spring snowmelt processes. The
model is built as follows:

Mi ¼ DDFT ai þ NRFRni þ N (2)

where the subscript i denotes a day in the time series, Mi

is snowmelt SWE, Tai is positive air temperature, Rni is
average positive net radiation, DDF is the ‘temperature
factor’, NRF is the ‘net radiation factor’ and N is a fixed
constant term. Instantaneous distributed net radiation was
calculated from incident shortwave radiation, albedo and
incident longwave radiation as follows:

Rn ¼ Sin 1� αð Þ þ Lin � Lout (3)

where Sin is incident shortwave radiation, α is shortwave
albedo, Lin is incident longwave radiation and Lout is
outgoing longwave radiation. Lout was parameterized
using the Stefan–Boltzmann law [Lout = ɛσTs4, and Ts is
land surface temperature (LST)]. Spatial α and Ts were
obtained from remote sensing data. Spatial Sin and Lin are
dynamically downscaled and statistically bias corrected
and spatially disaggregated NCEP output.
The daily net radiation was parameterized from

instantaneous radiation values at noon. Sequin and
Itier (1983) pointed out that the relative contribution of
noon net radiation to integrated daily radiation is
Hydrol. Process. 30, 3967–3977 (2016)
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reasonably constant. This relationship can be expressed
as follows:

Rn;d ¼ CRn;s (4)

where C is the net radiation refractive coefficient,
which represents the relationship between the two net
radiation values, Rn,d is integrated daily radiation, and
Rn,s is instantaneous net radiation at noon. For this
study basin, C= 2.3. Then, integrated daily radiation
can be estimated sequentially.
To obtain high-resolution spatial SWE estimates in the

study basin, daily distributed SWE was calculated as
follows:

S_SWEiþ1 ¼ S_SWEi þ PREiþ1 � Melt_SWEiþ1 (5)

where S_SWEi+1 is SWE on i+1day after snowmelt,
S_SWEi is distributed SWE, PREi+1 is precipitation and
Melt_SWEi+1 is snowmelt SWE.
Key model parameters were selected from remote

sensing data. The initial snow depth of the snowmelt
model was from an improved microwave dataset from
AMSR-E data based on a priori snow characteristics in
Xinjiang, China (Che et al., 2008; Dai et al., 2012). The a
priori snow characteristics include the snow grain size,
snow density and temperature of the layered snowpack.
The root mean squared error (RMSE) and bias from this
new algorithm were greatly reduced compared with those
of existing SWE products from the National Snow and Ice
Data Center, moderately reduced compared with those of
the European Space Agency and slightly reduced
compared with those of the Environmental and Ecological
Science Data Center for West China. Precipitation is low
in spring in the study region, so AWS rainfall data were
selected for use in the model to simulate temporal
variations in river basin SWE.

Production of meteorological forcing data

The WRF model was used to downscale NCEP
reanalysis fields to obtain 5-km-resolution meteorological
data and was initialized using NCEP Final Analysis data
with a resolution of 1×1° (111×111km) (Pan et al.,
2014). The WRF model includes two-way nested
computational horizontal resolutions of 25 and 5km,
respectively. Meteorological variables produced for
spring (March–May) 2012 included 2-m temperature,
surface pressure, 2-m relative humidity, shortwave and
longwave radiation, wind fields and precipitation. The
domain covered 47°–49°N and 88°–91°E. The dataset is
in Lambert projection, and the temporal resolution of the
data is 1 h.
The MicroMet method is a statistical downscaling method

and is specifically designed to produce high-resolution
Copyright © 2016 John Wiley & Sons, Ltd.
meteorological forcing data, and used to downscale the
dataset from 5 to 1 km, which is the spatial resolution
required for the snowmelt model in this study. The
principle of the MicroMet model is to use known
relationships between meteorological variables and the
surrounding landscape (primarily topography) to distrib-
ute the variables over any given landscape in computa-
tionally efficient and physically plausible ways (Liston
and Elder, 2006). In the method, the influences of cloud
cover, direct and diffuse solar radiation, and topographic
slope and aspect on incoming solar radiation were
considered during solar radiation calculation (Liston and
Elder, 2006). The specific equations and theory were
described in the reference (Liston and Elder, 2006).

Estimation of DDF and NRF

Several methods can be used to obtain DDF observa-
tions, such as using ablation stakes (Liu et al., 1998),
lysimeters (Ggild et al., 1999) and energy balance
calculations (Braithwaite et al., 1998). For this study,
the ablation stake method was considered most appropriate
to obtain data at 1-km spatial resolution to match the size
of remote sensing pixels.
Before the field observation experiment, we considered

influencing factors such as experimental conditions and
feasibility, and selected a field site at the outlet of the
Kayiertesi River basin (elevation, 1370ma.s.l.). The
experiment covered the period 10–24 March 2014. A
total of 26 stakes were established dispersedly in a
1×1km grid, and the heights were measured at noon each
day in the same sequence during the observation period to
obtain the total ablation depth. The average value from
the 26 observation stakes was used as the ablation depth
value for the pixel.
Automatic weather station records show that air

temperature was less than 0 °C during 10–13 March
2014, but daily snow ablation was about 1 cm. It can thus
be inferred that net radiation was the major control on
snowmelt in this period. The NRF was calibrated to be
0.12–0.18mmWm�2 day�1 from observation. The daily
ablation depth increased with time, with a maximum of
35mm during the observation period. The DDF is
calibrated to vary from 2.2 to 6mm°C�1 day�1 from
measurements during the study period. In this study, we
used a DDF of 5.8 mm °C�1 day�1, an NRF of
0.17mmWm�2 day�1, and a constant term N of 9mm.
A measured mean snow density of 180 kgm�3 was used
to convert snow depth into SWE during the study period.

The parameters of spatial α, Ts and initial snow depth

Key parameters for the model were selected from
remote sensing data. Albedo data used in this study are
from the Terra/Aqua Moderate Resolution Imaging
Hydrol. Process. 30, 3967–3977 (2016)
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Spectroradiometer (MODIS) synthesis albedo
(MCD43B3) with 1-km spatial resolution and 8-day
temporal resolution. The MODIS albedo algorithm is
derived from multiday, cloud-free, atmospherically
corrected surface reflectance observations collected by
the first seven land bands in the visible and near-infrared
spectrum (Schaaf et al., 2002; Wang et al., 2010). LST
used in this study is the MOD11 daily product with 1-km
spatial resolution, gridded in a sinusoidal map projection.
However, the MOD11 LST product is calculated with
cloud cover, so in this study an interpolation method
following the theory of similarity was used to remove
cloud pixels (Yu et al., 2015). This method estimates
missing LST pixels using known LST pixel sets with
similar LST variation characteristics as the missing pixels.
Elevation strongly affects snow quantity and the distri-
bution pattern. Snow depths increase with elevation up to
a certain level to a distinct peak and then decreases at the
highest elevations as a result of the redistribution of snow
by wind, sloughing and avalanching (Grünewald et al.,
2014). Although the spatial resolution of the microwave
data from Dai et al. (2012) was relatively coarse (25 km),
it is better than point data to set the initial state of the
snowmelt model, especially in areas with few observa-
tions of snow depth.
We used the MOD10A1 daily snow cover products to

validate the model results. These data were used to map
snow cover variations in the Kayiertesi River basin from
March to June 2012 for comparison with model results.
MOD10A1 daily products are available from the National
Snow and Ice Data Center (Boulder, CO, USA) and
include snow extent, snow albedo, fractional snow cover
and quality assessment data, all gridded at 500-m
resolution in a sinusoidal map projection. Cloud pixels
were determined using the daily snow cover series, and
snow cover maps were produced by compositing 3–5days
of the MOD10A1 product to find the maximum snow
cover extent during a 5-day period. The intent of the
algorithm in our study was similar to that of MOD10A2,
which maximizes the number of snow pixels while
minimizing the number of cloud pixels.
Evaluation method

Two quantitative statistical analysis methods (standard
regression and error analysis) were used to evaluate
parameters and model results. Standard regression
statistics measure the linear relationship between simu-
lated and observed values, and error analysis provides a
quantitative assessment of the model output. Each
statistical method applied in the performance evaluation
has limitations, and thus, the study uses multiple
assessment and evaluation methods including correlation
coefficients (r), the mean error (ME), RMSE and the
Copyright © 2016 John Wiley & Sons, Ltd.
Nash–Sutcliffe efficiency coefficient (NSE). The RMSE
is a weighted measure of the difference between
observations and simulations. The NSE was originally
proposed by Nash and Sutcliffe (1970) and is a useful
metric to evaluate and compare the performance of
hydrologic models. It is described by

NSE ¼ 1�∑ Qcalc � Qobsð Þ2
∑ Qobs � Qobs

� �2 (6)

where Qobs is the observed streamflow, Qcalc is the
predicted streamflow and Qobs is the mean observed flow
over the interval of interest.
RESULTS

Validation of meteorological forcing data

Hourly observation data are available from the AWS
site in the study basin. Temperature and radiation data are
required for the snowmelt model in this study, so these
two factors were validated using data from Kuwei station.
Figure 2 shows the daily and hourly air temperature
validation for the downscaling simulation of the
Kayiertesi River basin. Results show that the air
temperature simulation agrees well with AWS observa-
tions and captures the diurnal variation. The correlation
coefficient (r) between daily downscaling simulations and
AWS temperature is 0.95 (P<0.001), and the ME and
RMSE are 0.43 °C and 2.66 °C, respectively. The
correlation coefficient between hourly downscaling
simulations and AWS observations is 0.91 (P<0.001),
and ME and RMSE are 0.43 °C and 3.81 °C, respectively.
The results indicate that downscaling simulations of air
temperature are reliable for use in the snowmelt model
regardless of whether daily or hourly validations are
considered.
Figure 3a compares the observed and modelled hourly

Sin. The watershed is located in the mountains with
undulating terrain that causes an uneven distribution in
solar energy reaching the surface in our study area. At a
given height and time, solar radiation received at the
surface varies widely with slope and aspect. Thus, the
distribution of SWE is highly changed with solar
radiation during snowmelt process. Scatterplots show
that hourly simulations of Sin were also reasonable, with
an R value for hourly downscaled simulations and AWS
observations of 0.84 (P<0.001) and ME and RMSE
values of 28.2 and 163.5Wm�2, respectively. Analysis
of daily Sin shows that simulation results were consistent
with observations and captured the diurnal variation in
shortwave radiation. The downward shortwave radiation
RMSE is acceptable for hydrological and snowmelt
Hydrol. Process. 30, 3967–3977 (2016)



Figure 3. Comparison (a) between National Centers for Environmental Prediction (NCEP)-based downscaled and observed hourly shortwave radiations
at Kuwei station in spring 2012 and (b) NCEP-based downscaled, modified NCEP-based downscaled and observed hourly longwave radiation at Kuwei

station. The regression lines and linear equations between observation data and downscaled meteorological data were also shown in the figure

Figure 2. Comparison of National Centers for Environmental Prediction (NCEP)-based downscaled and observed air temperature at hourly and daily
scales at Kuwei station in spring 2012. The regression line between downscaled and observation temperatures was incorporated in the scatterplot. The

equations of the regression lines were also provided
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models in mountain areas, given the 10% instrument
error.
Hourly Lin simulations are less accurate than those for

shortwave radiation, and there is a small underestimation
of Lin in the model results. We found that most of Lin was
undervalued by around 20%. We therefore used an
empirical statistic parameter of 1.2 to correct the bias of
NCEP-based downscaled Lin value. This yielded a better
agreement between observed Lin and modified Lin, with
most of points scattered around the 1:1 line (Figure 3b),
and an increase in the linear regression slope from 0.36 to
0.7. The modified Lin better captured observed values at
an hourly scale.
The snowmelt model uses instantaneous Sin and Lin

calculations to obtain daily Rn for estimating spatially
distributed daily snowmelt. This modification will
Copyright © 2016 John Wiley & Sons, Ltd.
improve the underestimate of instantaneous Lin and daily
Rn, thereby reducing errors in snowmelt estimates in the
remote sensing (RS)-based snowmelt model, particularly
for mountainous regions.
Validation of α and Ts
The parameters α and Ts are important in the RS-based

snowmelt model. Before using spatial α and Ts derived
from remote sensing data, we validated these data to test
their applicability in this study area. Figure 4 compares
observed and MODIS albedo and LST. MODIS albedo
was validated using measured data from 2014 because of
installation of radiometers at this time; MODIS LST was
validated using observed data from spring 2012. The
results indicate strong correlations between observed and
Hydrol. Process. 30, 3967–3977 (2016)



Figure 4. Scatterplots of (a) Moderate Resolution Imaging Spectroradiometer (MODIS) albedo and observed albedo and (b) MODIS and land surface
temperature (LST) in spring 2012. The spatial distribution of MODIS albedo and MODIS LST in one day in the Kayiertesi River basin was inserted in

(a) and (b), respectively
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MODIS albedo and LST, with a regression coefficient of
R2 = 0.75 (P<0.01) for albedo and R2 = 0.84 (P<0.01)
for LST. Thus, both types of MODIS data are considered
reliable for use in the RS-based snowmelt model.

SWE simulation in spring 2012

Based on the model calibration for the Kayiertesi River
basin as described earlier, we simulated snowmelt
processes from 1 March 2012 to the beginning of June
2012 to obtain high-resolution SWE variations in the
basin. Figure 5 shows the spatial and temporal variations
in SWE for the eight snowmelt days investigated. There
are 2194pixels in the basin with a spatial resolution of
1 × 1 km. The daily mean SWE of the basin was
calculated by calculating SWE value from each pixel,
so as to calculate the volume of SWE over the whole
basin.
To verify the accuracy of the simulation results, we

extracted the snow cover area from MOD10A1 remote
sensing data (1 km resolution) on a daily basis. SWE
variations compare well with snow cover obtained from
MOD10A1 during the same period (Figure 5), which
means that the variations in snow cover area and
simulated SWE are consistent. The two snow cover ratio
datasets from MOD10A1 and SWE simulated in this
study are also showed in Figure 5. The snow cover area
calculated from modelled SWE is a little higher than that
from MOD10A1, but the maximum correlation coeffi-
cient is 0.98. The spatial variation in land surface
parameters measured by remote sensing data is consid-
ered reasonable, and we therefore conclude that SWE
simulations are close to reality. According to the model
results, we calculated mean SWE and the SWE volume of
the whole basin in different date. From 1 March to 25
May, mean SWE varied from 70.18 to 1.09mm;
snowmelt water volume varied from 154 × 106 to
Copyright © 2016 John Wiley & Sons, Ltd.
2.4× 106m3. The snowmelt period lasted for approxi-
mately 3months in spring 2012 in the basin.
Another validation method uses in situ snow depth to

verify modelled results. Snow depth is recorded by a
snow depth meter (Campbell SR50, ±1 cm) at the outlet
of the study basin. Simulated SWE was compared with
observed data at this location (Figure 6a). The modelled
SWE curve is close to the one from observation, and the
decrease in modelled SWE is a close reflection of
snowmelt processes at the outlet of the basin during
March 2012. Furthermore, relative error analysis gives a
maximum of 52.4%, a minimum relative error of 0.26%,
and an average relative error of 6.7%. NSE is 0.98, which
further verifies that the improved model simulations using
spatial forcing data correspond well with observed values.
After 1 March, the solar height angle continues to

increase, and the surface radiation balance also increases
along with temperature. In this basin, snow gradually
melted from low to high altitudes (Figure 6b). From early
to late March 2012, melt rates of snow at the altitude of
1400, 1600 and 1800m were close. They all melt away at
the end of March. The melt rates at low altitudes were
larger than those at high-altitude areas during this period.
The snowmelt beginning time was delayed with altitude
from 2000 to 3000m (Figure 6b).
DISCUSSION

Daily snowmelt water volume was calculated in the
Kayiertesi River basin for spring 2012 using modelled
spatial SWE. As shown in Figure 7, daily snowmelt water
volume increased with temperature in March, and peak
snowmelt occurred at the end of March. The peak daily
snowmelt volume was 5.3 ×106m3 over the whole basin.
However, there was high variation in daily snowmelt
water volume in April with no obvious peak melt period.
Hydrol. Process. 30, 3967–3977 (2016)



Figure 5. Spatiotemporal variations of modelled snow water equivalent (SWE) compared with the spatial distribution of snow cover from Moderate
Resolution Imaging Spectroradiometer (MODIS) in spring 2012. The bars indicate snow cover area percentage (%) from model result and MODIS

observation
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There were four days in April when the amount of
snowmelt run-off was near zero. At other times, the small
amount of snowmelt run-off was affected by precipitation
events. For example, precipitation recorded at the station
was 1.6mm on 1 April, 2.8mm on 17 April, 5mm on 28
April and 9.9mm on 30 April. Precipitation can be
divided into snow or rain, depending on whether the
temperature is above or below a certain threshold
(Vehviläinen, 1992; L’hôte et al., 2005), which is most
widely used for identification of precipitation types. In
this study, we choose the widely used single-threshold
method and 0 °C as the threshold to discriminate the
precipitation types. 0 °C is a widely used temperature
threshold and also has been validated in Xinjiang (Yang
et al., 1997; Clark et al., 2006; Qing et al., 2011; Duan
et al., 2012). Rainfall is often accompanied by windy and
humid conditions, which can greatly accelerate snowmelt
to produce more melt water in mountainous regions (Sui
et al., 2010). However, snowfall results in increased snow
cover and slows down the rate of snowmelt and melt
water release. Several phenomena may also occur
Copyright © 2016 John Wiley & Sons, Ltd.
simultaneously at different elevations. For example, a
valley may be bare in spring on hill slopes, and at high
elevations snow may melt or accumulate. The basic
elevation trend is affected by spatial variations in snow
deposition, exposure and transport mechanisms (e.g.
wind). On the four precipitation days in the study region,
air temperature at the outlet of the basin at an altitude of
1370m was no more than 10.9 °C, assuming the change
in temperature with elevation can be calculated using a
temperature lapse rate of �0.65 °C/100m (Gardner et al.,
2009). Snow fell in the basin on 1 April above 1960m,
and on 30 April above 3040m. On this latter date, snow
cover had melted below 2600m (Figure 8). Thus, it is
inferred that most of the precipitation over the basin
over the four-day period fell as snow. In this case,
temperature, radiation and the release of snowmelt water
would have decreased. In May, there were also several
peaks in 16–18 May and 25 May, but these were not as
high as in April, because about 60% of snow cover had
melted out. However, measures need to be taken to
protect against flooding resulting from a large pulse in
Hydrol. Process. 30, 3967–3977 (2016)



Figure 6. (a) Variation of modelled and observed snow water equivalents
(SWEs) at the outlet of the basin over time. (b) Variation of modelled

SWE at different elevations over time

Figure 8. Distribution of modelled snow water equivalent in the study
basin on 30 April 2012
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snowmelt from unexpected heavy precipitation events
during this period.
Snowmelt run-off in spring 2012 was calculated by

assuming that snow cover was completely converted to
run-off (1.68×108m). Because of the lack of measured
run-off data in the basin in 2012, this research used
monthly run-off data from Kuwei Hydrological Station
during 1959–2010 to make preliminary estimates of the
Figure 7. Variations of daily precipitation, daily snowmelt water volume (S

Copyright © 2016 John Wiley & Sons, Ltd.
proportion of snowmelt run-off in the basin. The average
annual run-off in the study basin in 1959–2010 was
8×108m3, and average spring (March to May) run-off
was 2.33×108m3.
According to snowmelt simulations in this study,

spring snowmelt run-off accounted for 72.1% of spring
run-off in 2012 and 21% of annual run-off. This shows
that a high proportion of snowmelt run-off is a significant
characteristic of mountainous watersheds in the Altay
Mountains. In comparison, for the Kelan River, a branch
of the Ertix River on the southern slopes of the Altay
Mountains, 45% of annual basin flow is derived from
snowmelt (Shen et al., 2007). However, for the upper
Yellow River, annual snowmelt run-off accounts for 20%
of annual run-off from the basin (Wang and Shi, 2000).
The proportion of snowmelt run-off relative to the total
run-off from late March to late June was 55.9% in Shule
River, which is located in the western Qilian Mountains
WV) and daily mean temperature in the study basin during spring 2012

Hydrol. Process. 30, 3967–3977 (2016)
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and is also affected by westerly winds. In Shule River
basin, the proportion of snowmelt run-off relative to the
annual run-off was only 15.4%. Compared with these
results, the proportion of snowmelt run-off in our study
basin is high. This further illustrates that snowmelt water
is typically the most important source of spring run-off in
basins in the Altay Mountains.
Snowmelt run-off is strongly affected by weather and

climate change and varies year by year as well as in long-
term scales. As snowmelt plays an important role in
regulating the downstream river flow in the studied basin,
further research into relationships between snowmelt and
mountain water resources not only has great scientific
significance, but is also important to the region’s
economic development. For example, in heavy snowy
year, if snowmelt in the upstream of the basin came
earlier than that in normal year, it may cause snowmelt
flood which threaten cropland, agricultural activities and
life in the downstream. However, in less snow year,
because snowmelt in the upstream plays an important role
as water resource in spring, it would be not sufficient to
irrigate cropland in the downstream and influence
agriculture economic development. The results of this
study also provide a basis for snowmelt flood prevention.
The results of this study can provide a good method to
calculate volume of run-off generation, and it can prepare
for run-off concentration. Thus, the time of peak flood
could be calculated precisely in the basin, which has the
benefits of snowmelt flood prevention in the downstream
of the basin and reduction of damage from snowmelt
floods.
CONCLUSIONS

This study simulated snowmelt in the Kayiertesi River
catchment in spring 2012 using a TIM that was improved
using a combination of remote sensing data, in situ
observations and a short-term observational campaign,
driven by NCEP-based meteorology, downscaled using
WRF and a statistical bias correction/spatial disaggrega-
tion model. Our results indicate that use of downscaled,
bias-corrected and spatially disaggregated NCEP meteo-
rology to drive the snowmelt model significantly
improves the quality of spatial meteorological data. Using
remote sensing data in the improved snowmelt model
reduces the number of parameterizations, and also makes
it easy to apply the model in data-scarce regions.
The use of forcing data to produce reliable SWE

simulations in spring 2012 in this study also provides
insight into temporal SWE variations in mountainous
basins. Daily variations in snowmelt water volume and
the proportion of snowmelt run-off were also analysed
and calculated. Snowmelt water is the main run-off source
Copyright © 2016 John Wiley & Sons, Ltd.
in the catchment and should be managed and fully
utilized. The results also provide a basis for the
prevention of snowmelt-induced flooding.
Future work should further explore climatological

controls on TIM parameters to determine the transfer-
ability of our approach to other regions and to spatially
distributed simulation approaches across large and/or
data-sparse catchments. In this basin, an applicable
concentration model needs to be built, and then peak
discharge in a year could be forecasted; one or two other
watersheds in Xinjiang will be chosen to apply the
method of this study.
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