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Figure 1. Location of the sampling site in Fukang Station and surrounding geographic environment. 

 
to identify emission sources and feature of different pollution 
sources in FK. 

We expect that our results could serve as a fundamental 
data set for the health risk assessment in the future and can be 
useful for making pollution control strategies in the FK as well 
as rural sites of Northwest China. Moreover, we were trying to 
relate the heavy metal pollution in ambient air to other envi-
ronmental medium, such as snow and ice core in the Tianshan 
Mountains region. 
 
1  METHODS 
1.1  Site Description and Sampling 

The aerosol samples were consecutively collected from 
September 21st to October 4th, 2013 at the Fukang Station of 
Desert Ecology, Chinese Academy of Sciences (44.17ºN, 
88.45ºE, 475 m a.s.l.) (Fig. 1). 

The FK Station located on the north foot of the eastern 
Tianshan Mountains, controlled by high atmospheric pressure 
from Mongolia all the year round with westerly jet stream pre-
vails across this area. The sampling site is approximately 18 
km north from central Fukang City, 63 km from Mt. Bogda 
and 72 km northeast and commonly downwind from Urumqi, 
which is the capital city with one million people and the indus-
trial center of the Xinjiang Uygur Autonomous Region.  

Aerosol samples were recovered on ZEFLUOR filters 
(2.0-μm pore size, 47 mm, Pall Life Sciences) using a 12-V 
diaphragm pump powered by solar cells, avoiding the conta-
mination from the power generator. Filters were loaded in the 
field and mounted face down about 2 m above the ground sur-
face. The sampling period for each day and night aerosol sam-
ple was 8–10 h, respectively. Twenty-seven aerosol samples 
were collected. The air volume was converted into standard 
conditions according to the local ambient conditions. After 
sampling, the filters were removed from the filter holder and 
placed into clean airtight plastic containers stored at 4 ºC be-

fore analysis after sampling. 
 
1.2  Chemical Analysis 

The collected aerosol filters were placed in a Teflon high 
pressure vessel for digestion using 2 mL of mixed solution (1.5 
mL concentrated HNO3 and 0.5 mL concentrated HF). The 
vessels were treated in ultrasonic bath for 25 min in the second 
step. Subsequently, the samples were digested in an oven for 4 
h at 190 ºC.  After cooling, the solutions were heated at 150 ºC, 
and another 0.5 mL HNO3 was added into the residue, and 
further heated on a hot plate at 170 ºC for 4 h.  This procedure 
for digestion was repeated twice.  In each digestion batch (27 
samples), a reagent blank was also used to check the sample 
handling processes. A total of 68 elements were measured by 
inductively coupled plasma-mass spectrometry (ICP-SFMS, 
Element, Bremen, Germany) in a 1 000-class clean room in the 
State Key Laboratory of Cryospheric Sciences, Cold and Arid 
Regions Environmental and Engineering Research Institute, 
Chinese Academy of Sciences, Lanzhou.  

Elemental concentrations were quantified using external 
calibration standards (AccuTrace Reference Standard). A 
check standard was analyzed after the initial calibration and 
after every 10 samples. The method detection limits were listed 
as follow (Table S1). For precision, the corresponding RSD 
values of all element concentrations measured in the reference 
material were less than 5%. The final concentrations were cor-
rected with reagent and filter blanks. 

Individual particles were analyzed using a field emission 
scanning electron microscope (JSM-6701F) equipped with an 
energy-dispersive X-ray spectrometer (EDX/EDS). Section of 
each filter was cut and mounted onto the electron microprobe 
stub, and coated with a thin gold film for a higher quality sec-
ondary electron image. Operating conditions were: accelerating 
voltage=5–10 kV; spectral acquisition times=60 s. Noran Sys-
tem software for energy-dispersive microanalysis was used for 
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the quantitative analysis of individual particles. 
 
2  RESULTS 
2.1  General Characteristics of Trace Elements 

Table S1 describes the average concentrations (μg/m3) of 
selected 49 elements at the FK site during the observation pe-
riod. Based on the standard periodic table and chemical proper-
ties, the elements analyzed can be grouped into four categories: 
(1) alkali metals and alkali earth metals: Na, K, Rb, Cs, Be, Mg, 
Ca, Sr, Ba, and Al; (2) transition metals: Sc, Ti, V, Cr, Mn, Fe, 
Co, Ni, Cu, and Zn; (3) lanthanoids: La, Ce, Pr, Nd, Sm, Eu, 
Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; (4) heavy elements: As, 
Sb, Se, Ag, Cd, Hg, Sn, Pb, Tl, Zr, Hf, Ta, W, Th, and U. 

According to the statistical summary in Table S1, the dai-
ly average concentration of selected 49 elements ranged from 
0.000 5 to 20.87 μg/m3. The lanthanoids was found to be the 
lowest with a value of 0.015 μg/m3, accounting for 0.4% of the 

total metal concentrations in the air mass, while alkali metals 
and alkali earth metals showed the highest concentration 
ranged from 0.000 5 to 20.866 1 μg/m3, constituted about 78.4% 
of the measured concentrations. The transition metals and 
heavy metals accounted for about 11.1% and 10.1% of the total 
concentration, respectively.  

Overall, the average concentrations of alkali metals, alkali 
earth metals and geogenic elements (e.g., Fe) were 2–4 orders 
of magnitude higher than the transition metals, heavy elements 
and lanthanoids. 
 
2.2  Morphology Result 

The final dataset included around 1 500 particles also ana-
lyzed on 12 filters. The particles were grouped into three do-
minant types according to their morphology and EDX signal: 
Si/Al-rich particles (abundance 36%), Si/Fe-rich particles (ab-
undance 24%) and Pb-rich particles (abundance 10%) (Fig. 2). 

 

 

Figure 2. SEM images of typical aerosol particles. (a) Si/Al-rich particles; (b) Si/Fe-rich particles; (c) Pb-rich particles; (d) particles containing soot with vary-

ing heavy metals and crustal elements. 
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3  DISCUSSION 
3.1  Comparison of Trace Element Concentration with 
Other Data 

To further compare the elements concentrations in FK 
aerosols, data from other cities have also been included in Ta-
ble S2. It is clear that concentrations of different elements in 
FK were generally comparable with the Urumqi and Beijing 
(two heavy polluted cities in China), except for As, Se, Sb and 
Cd. The concentration of As, Se, Sb and Cd in FK is distinctly 
higher than those in Beijing, indicating that FK receives even 
more anthropogenic influence since the dominant sources of 
As, Se, Sb and Cd are closely related to human activities (Ay-
rault et al., 2010; Pey et al., 2010). 

In comparison with south of the city of Almaty, a remote 
site (43.04ºN, 76.58ºE, 2 760 m a.s.l.) representing the regional 
background condition in Tianshan Mountains (Hoornaert et al., 
2004), the averaged concentrations of elements in FK were 
significantly higher, from 10 fold for Cr to 323 fold for Zn. 

Our mean concentration values measured in FK were even 
higher than previous reliable data obtained from Tibetan Pla-
teau, despite difference in time periods investigated. For exam-
ple, arsenic concentrations in HK were 247 to 11 106 times 
higher than that in Lhasa and Nam Co, respectively (Table S2). 

The average concentration of total detected elements in 
FK was 74.1 μg/m3, higher than the China’s Ambient Air 
Quality Standard (GB 3095-2012) (MEP and GAQS, 2012) for 
cities (limit of 50 μg/m3). 

The results indicated that there might be influences of 
anthropogenic activities on the atmospheric environment in the 
FK. Considering that alkali metals, alkali earth metals and 
other main geogenic elements (e.g., Fe) in crust/soil/street dust 
are also several orders than trace metals, the absolute concen-
tration is not an ideal measure for the differentiation between 
natural and anthropogenic sources. Instead, enrichment factor 
analysis is discussed below. 
 
3.2   Enrichment Factor Analysis 

Trace elements in the atmosphere originate from natural 
sources such as rock and soil dust, sea-salt spray, volcanoes, 
wild forest fires and marine biogenic sources (Lee et al., 2008). 
On a global scale, however, the emissions of trace elements 
into the atmosphere from various anthropogenic sources are 
known to exceed those from natural sources (Nriagu et al., 
1989). Crustal enrichment factors (EFc) is often calculated to 
identify source regions and evaluate the degree of anthropo-
genic influence (Hur Do et al., 2013; Öztürk et al., 2012; Lee et 
al., 2008; Cong et al., 2007; Duce et al., 1975) EFc is defined 
as the concentration ratio of a given element to that of Al (Al, 
Si, Ti, or Fe were commonly used as approximation of rock 
and soil dust because they are abundant in crustal material and 
are not significantly affected by contamination), normalized to 
the same concentration ratio characteristic of the upper conti-
nental crust. For example, the EFc for Cr is thus 

EFc=(Cr/Al)aerosol /(Cr/Al)crust 

where Cr represents the element of interest; Al is a reference 
element. Here, we have used the data for the upper continental 
crust given by Wedepohl (1995). The aerosol and crust sub-

scripts refer to element in the aerosol samples and crustal ma-
terial, respectively. An EFc value close to unity is considered 
to indicate a dominant input from rock and soil, while an EFc 
value greater than 10 suggests that the corresponding element 
originated mainly from other sources (Wu et al., 2009; Cong et 
al., 2007; Ferrari et al., 2001). 

Figure 3 shows the mean values of crustal enrichment fac-
tors for the measured trace elements. The average EFc values 
are observed to be highly variable between elements, with the 
lowest value determined for Zr (0.18) and the highest deter-
mined for Se (37 137.60). This wide range of EFc values for 
each element is an indicator of the differences in crustal contri-
butions from one group to another. 

The mean values of EFc are relatively lower for alkali 
metals and alkali earth metals (all less than 10), with the fol-
lowing occurrence order: Mg<Al<Ba<Be<Sr<Na<K<Ca<Rb, 
showing that their compositions are close to that of the upper 
continental crust. The transition metals and lanthanoids have 
EFc values from 0.35 to 93.78, are considered moderately 
enriched. Heavy elements were found to be highly enriched 
(with EFc values greater than 100, ranged from 171.00 to      
37 137.00) in the FK aerosol samples. 

Our values are in broad agreement with the result from 
previous studies in Beijing. Yang et al. (2003) reported that 
EFc values of heavy elements such as Se, Sb, S, As and Pb in 
Beijing were significantly high, ranged from 121.1 to             
10 622.71, while alkali metals, alkali earth metals and transi-
tion metals (e.g., Na, Mg, Ca, K, Al, V, Cr, and Mn) were also 
found below 10.  

Based on the previous studies (Wu et al., 2009; Cong et 
al., 2007), elements can be classified into three types in this 
study:  (I) Crustal originated metals (EFc<10): alkali metals 
and alkali earth metals are not enriched in FK and can be con-
sidered as soil originated metals. (II) Mixed source metals 
(10<EFc<100): it was possible to establish that transition met-
als and lanthanoids are influenced both from crustal and anth-
ropogenic sources according to their enriched EFc values (Lee 
et al., 2008; Hong et al., 2004; Barbante et al., 2003). For ex-
ample, for Sc, Ti, V, Cr, Mn, Fe, La, Gd and Yb are not 
enriched with EFc values below 5, can be attributed to crustal 
originated metals. While high EFc for Co, Ni, Cu, Zn and the 
remaining lanthanoids elements can be attributed to the pres-
ence of these metals in local soil in unusually high concentra-
tions (Koçak et al., 2004; Güllü et al., 1998; Kubilay and Say-
dam, 1995), while non-ferrous metal production, combustion 
of petroleum products and waste incineration could also pro-
vide the major source of Ni, Cu, Zn and V (Wu et al., 2009; 
Pacyna and Pacyna, 2001). In addition, differences in reference 
and local soil composition might lead to slightly <10 EFc for 
this second group of elements (Öztürk et al., 2012). (III) Pollu-
tion derived metals (EFc>100): heavy elements in FK aerosols 
showed highly enriched with EFc order of Se>Tl>Hg>Sb> 
Sn>As>W>Ag>Ta>U>Hf>Pb. Previous studies showed that 
As and Se are elements typically derived from coal combustion 
(Ayrault et al., 2010; Pey et al., 2010). Stibium, Sn, Zn, Pb and 
W are released to the atmosphere mainly by industrial emis-
sions and the combustion of leaded and low-leaded gasoline 
(Öztürk et al., 2012; Wu et al., 2009). 
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Figure 3. Enrichment factors (EFc) in FK aerosols, relative to Al as the reference element. (I) Crustal originated metals (EFc<10); (II) mixed source metals 

(10<EFc<100); (III) pollution derived metals (EFc>100). 

 
3.3  Individual Particles Analysis 

Figure 2 shows the typical individual particles loaded on 
the filters at different magnifications. According to the results 
of enrichment factor analysis above, three particle categories 
could be obtained based on the morphology and chemical cha-
racteristics of individual particles. The distinct characteristics 
and possible origins of each group are described in detail as 
follows. 

Crustal originated particles: Si/Al-rich particles (ab-
undance 36%).  The alumosilicates are characterized by high 
contents of Si and Al with varying Na, Mg, K and Ca. Particles 
containing predominantly silicon are classified as silica (e.g., 
quartz). In our study, alumosilicates and silica were found to be 
the most abundant particle type with average abundance of 
36%. From the point of view of mineralogy, alumosilicates 
usually include Al4[Si4O10](OH)4, Al4SiO20nH2O, Na[AlSi3O8], 
K[AlSi3O8], Ca[Al2Si2O8] and Ba[Al2Si2O8] which are typical 
terrigenous minerals (Yang et al., 2015; Zhang et al., 2015). 
Therefore, a large fraction of the irregular shaped particles (Fig. 
2a) identified as alumosilicates could be attributed to eolian 
dispersion of soil particles.  

Crustal originated particles: Si/Fe-rich particles (ab-
undance 24%).  Particles consisting predominantly of Si and 
Fe account for 24% of the total aerosol abundance. The Si/Fe-
rich particles are considered to be biotite 
(K(Mg,Fe)3[AlSi3O10(OH,F)2]) due to biotite generally asso-
ciated with magnetite, is abundant in West China, especially in 
Xinjiang Uygur Autonomous Region. Besides soil dispersion, 
Fe-rich particle could also be produced by coal-fired boilers 
and metal industry. Fe-rich particles emanated from high-
temperature furnace usually show spherical shape. However, 
all of Si/Fe-rich particles in this study have irregular (non-
spherical) morphology (Fig. 2b), thus identified as natural  
origin. 

Pollution derived particles: Pb-rich particles (abun-
dance 10%).  Minor amounts of Pb-rich particles, containing a 
small amount of S, Ca, Cr Al, Fe and Ca elements occurred in 
the aerosol samples (Fig. 2c). As analyzed above, Pb had the 
high absolute EFc value of 230.3, indicating a serious impact 
of anthropogenic activities. Important sources of atmospheric 
lead include emissions from automotive emissions, coal com-

bustion, mining or smelting operations and waste incineration. 
Cheng and Hu (2010) suggested that Pb originates mostly from 
leaded gasoline. Furthermore, it has been verified that airborne 
Pb can be carried globally through long-range transport, since 
it tends to concentrate on fine particles that have a long resi-
dence time in the atmosphere (Cong et al., 2010). 

Mixed source particles:  There also some small soot in 
many samples. They are clearly distinguishable from other 
aerosol types due to its unique morphology, shown in Fig. 2d. 
The morphology of this kind of particle varies from short 
chains to complex clusters, which depend on different types of 
fuels, burning conditions, and atmospheric processing (Cha-
krabarty et al., 2006; Yue et al., 2006). In our study, a consi-
derable percentage of soot particles contain S, Cr, Zn, Pb and 
Ni with varying crustal elements (e.g., Al, K and Ca), which 
was observed by EDX analysis, indicating a mixed source of 
these particles. Paoletti et al. (2003) suggested that the S con-
tent in soot aggregates was probably caused by a gas-to-
particle conversion process during the transport (Pósfai et al., 
2003). Other unrecognized particles could contain organic 
particles with light elements (such as C, N and O) or biological 
particles. 
 
3.4  Variations in the Daily Percentage of Three Categories 

Variations of calculated daily percentage of crustal origi-
nated metals (I), mixed source metals (II) and pollution derived 
metals (III) are shown blow (Fig. 4) based on the EFc analysis 
and the morphology results.  Generally, the daily percentage of 
these three categories exhibited pronounced difference with the 
order of (I)>(III)>(II). The crustal originated metals (alkali 
metals and alkali earth metals) showed the highest average 
daily percentage at 69.7%, ranged from 51.0% to 76.0% during 
the sampling period. The mixed source metals including transi-
tion metals and lanthanoids was found to be the lowest with an 
average percentage of 11.2%, while pollution derived heavy 
metals accounted for 19.1% of the total metal concentrations. 
The largest daily variability of pollution derived metals (III) 
was found (ranged from 11.0% to 41.0%) when compared to 
crustal originated metals (I) and mixed source metals (II) dur-
ing the sampling period (Fig. 4), indicating significant day to 
day variations in source strength of these pollutants. 
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Figure 4. Daily variations in the percentage of crustal originated metals, mixed source metals and pollution derived metals during the sampling period from Sep. 

21 to Oct. 4, 2013. 

 
3.5  Possible Source Investigation 

In order to investigate potential source regions of pollu-
tion derived heavy metals in FK aerosols, 5-day backward 
trajectories were computed using the Hybrid Single-Particle 
Lagrangian Integrated Trajectory (HYSPLIT-4) model devel-
oped by the National Oceanic and Atmospheric Administration 
(http://www.arl.noaa.gov/ready/hysplit4. html; Reanalysis 
Meteorological data). The trajectories were calculated at 500 m 
above ground level during the period of Sep. 21–Oct. 4, 2013 
(Fig. 5). It is apparent that pollution derived heavy metals re-
spond independently to different pollutant sources, day-to-day 
variations of individual heavy metal concentrations thus have 
been considered (Fig. 6). 

In general, the majority of air mass was from north, west 
and south. Combining them with the daily percentage varia-
tions in different categories (Fig. 4) and the variations of indi-
vidual heavy metal concentrations (Fig. 6), the air masses ar-
riving at the sampling site can be classified into three types.  

(1) Air masses come from the north. Samples of these 
north wind days exhibited high daily percentage of pollution 
derived heavy metals, especially on Sep. 21 (41%) (Fig. 4), as 
well as high concentration of all individual heavy metals (Sb, 
Ag, Se, As, Hg, Ta, Tl, Sn and Pb) (Fig. 6). For Sb, Ag, Se, 
their concentrations were less varied during the campaign pe-
riod except for September 21st and October 4th when peaks 

were found during these two north wind days (Fig. 6), indicat-
ing an anthropogenic sources from the north. The trajectories 
ending on the Sep. 21–25 and Oct. 3–4 represented the long-
range aerosol transport, originating from the northwest regions 
near Siberia, passing through East Kazakhstan, Karamay Oil 
Field, Gurbantunggut Desert and south edge of Jungger Basin. 
Especially, these air masses traveled across the Semipalatinsk 
test site (Figs. 1 and 5). The Semipalatinsk test site (STS) 
(50º7′N, 78º43′E) was the primary testing venue for the former 
Soviet Union’s nuclear weapons (Zhang and Edwards, 2011; 
Olivier et al., 2003). It is located on the Northeast Kazakhstan, 
south valley of the Irtysh River. The nuclear test site were lo-
cated around 150 km west of the Semipalatinsk Town, near the 
border of the East Kazakhstan Province and Pavlodar Province, 
with most of the nuclear tests taking place at various sites fur-
ther to the west and south, some as far as into Karagandy Prov-
ince. While according to the data derived from backward air 
trajectories from the Tianshan, the typical transit time from 
possible major source regions (such as Gobi Desert in Mongo-
lia and Badain Jaran Desert in northern China) to the Tianshan 
(about 1 000 km distant) is 0.5–1 day in summer (Sun et al., 
2001). Our sampling site is therefore assumed to be also af-
fected by long range transport of Sb, Ag, Se, Hg, Tl and Sn on 
Sep. 21 and Oct. 4 emissions from Karamay Oil Field and the 
nuclear test sites like Semipalatinsk. 
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Figure 5. Daily backward trajectories terminating at the sampling site. 

 

 

Figure 6. Day-to-day variations in the concentrations of heavy metals during the sampling campaign from Sep. 21 to Oct. 4, 2013. 

 
 (2) Air masses come from the west. Elements Tl, Sn and 

Pb were more pronounced on Sep. 29–30 and Oct. 1–2 in addi-
tion to Sep. 21 and 26 (Fig. 6). The trajectories ending on these 
days were originated from the arid regions of west Central Asia 
(Fig. 5). It is clear that samples of these west wind days exhi-
bited lowest daily percentage of three categories when com-
pared with those in north and south days (Fig. 4), indicating 

less pollutant was carried by westerlies although these west air 
masses resulted in high concentration of Tl, Sn and Pb. In addi-
tion, FK sampling site is adjacent to Urumqi Ganquanbao In-
dustrial Park (15 km), which based on petrochemical programs. 
Air masses come from the west through the industrial park thus 
probably contributed to high concentration of Tl, Sn and        
Pb in FK. 
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(3) Air masses come from the south. For example, com-
pared to Sep. 21 and Oct. 4, As, Hg, Ta, Tl, Sn and Pb were 
more pronounced on Sep. 26, 27 and 28 (Fig. 6). At the same 
time, samples of these days exhibited higher daily percentage 
of pollution derived metals when compared with those from 
west wind days (Fig. 4). The trajectories arriving on the Sep. 
26, 27 and 28 represented the short-range aerosol transport, 
originating from the south regions near north edge of Qinghai-
Tibetan Plateau, passing through the Tarim Basin and Urumqi 
City. Since there is no anthropogenic activities in the huge 
Taklimakan Desert, and the long-range pollution influence 
from South Asia (such as India) was weakly due to the short 
route of the trajectories in our sampling site, Urumqi City was 
considered to be the probably sources to As, Hg, Ta, Tl, Sn and 
Pb at last. Urumqi (86º37′–88º58′E, 42º45′–44º08′N), the capi-
tal of Xinjiang Uygur Autonomous Region of China, is in the 
middle area of Xinjiang, on the north foot of Tianshan and the 
south edge of the Jungger Basin (Fig. 1). For the past two dec-
ades, Urumqi has been suffering from heavy air-pollution and 
was evaluated as one of the ten heaviest air polluted cities in 
the world in 1998 (Li et al., 2008; Mamtimin and Meixner, 
2007). Enhanced industrial activities in Urumqi might lead to 
high concentrations of several heavy metals such as As, Hg, Ta, 
Tl, Sn and Pb. 

Besides, the local factories in FK would be absolutely the 
contributors to the heavy metals of our samples. The advanta-
geous industries of FK City fall to coal production, coal chem-
ical industry, no-ferrous metal production, subsequent deep 
processing of oil and gas (Wu et al., 2008). Fukang has rough-
ly 28 coal related factories, especially electrolytic nickel pro-
duction. In addition, FK produced 3 256 t electrolytic nickels 
in 2005 with 3.87 times of the nation’s growth rate (Wu et al., 
2008). All of these industrial factories could not shirk respon-
sibility to the heavy metal-polluted aerosols in FK. 
 
4  CONCLUSION 

Aerosol samples collected in FK showed that FK has been 
seriously polluted by heavy metals. Three dominant types of 
selected 49 elements was determined based on enrichment 
factors and morphology analysis: (I) crustal originated ele-
ments (including alkali metals, alkali earth metals, Si/Al-rich 
particles and Si/Fe-rich particles); (II) mixed source elements 
(including transition metals and lanthanoids and mixed source 
particles); (III) pollution derived elements (including heavy 
metals and Pb-rich particles). The backward trajectories results 
indicated the air mass from north was identified as the most 
polluted source when compared to south and west.  

Samples of north wind days exhibited high daily percen-
tage of pollution derived heavy metals, as well as high concen-
tration of all individual heavy metals, such as Sb, Ag, Se, As, 
Hg, Ta, Tl, Sn and Pb. 
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