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The compositions of Sr and Pb isotopes in the soluble and insoluble dust in six samples from the
Miaoergou ice core in eastern Tienshan, China, were measured. The six samples were dated from top to
bottom as follows: 2000 AD, 1991 AD, 1983 AD, 1977 AD, 1962 AD and 1958 AD. The 87Sr/36Sr ratios in the
soluble fraction ranged from 0.709984 to 0.711031. The isotopic ratios of Pb in the soluble and insoluble
dust were between 17.962—18.182 and 18.198—18.409 for 205Pb/2%’Pb; 15.540—15.606 and 15.560
—15.581 for 2%8pb/207Pb; and 37.994—38.173 and 38.179—38.384 for 208Pb/204Pb, respectively. These
isotopic results for insoluble dust allowed us to document the origins of the dust in the Miaoergou
Glacier in eastern Tienshan. The major sources of the natural aeolian deposits were the Taklamakan and
Gobi deserts. Natural and anthropogenic Pb sources were assessed using a simple ternary model in which
deserts, lead ore and coal served as the primary sources of insoluble dust. Lead ore, coal combustion, and
the use of leaded gasoline in the surrounding area may represent additional anthropogenic sources of
soluble dust. Thus, anthropogenic sources could be further investigated by using the dust-free soluble
fractions. The Pb concentration and Pb isotopic compositions from the High Asia ice cores provided
distinct evidence of the positive influences of anthropogenic factors associated with industrial devel-
opment and the prevailing atmospheric circulation patterns in these regions.
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1. Introduction

Impurities in snow and ice layers from alpine glaciers and polar
ice sheets provide a robust and well-preserved history of atmo-
spheric circulation patterns (Thompson et al., 2000; Ruth et al.,
2007; Wu et al., 2013). For example, the mineral dust concentra-
tions (fluxes) in the Antarctica Dome C ice core are correlated with
temperature records during glacial periods (Lambert et al., 2008),
and the dust record for the Tibet Plateau ice core has been used as a
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proxy for westerlies (Grigholm et al., 2015). To determine the extent
and time frame of global contamination by anthropogenic heavy
metals, various investigations have been performed to understand
the occurrence of selected metals (Hong et al, 1994, 2012;
McConnell and Edwards, 2008; Hur et al., 2013). Several reliable
time series have been reconstructed using Pb, Cr, Fe, Rb, Ba, U and
Hg based on ice core records (Boutron et al., 1991; Marteel et al.,
2008; Jitaru et al., 2009). These results indicate the history of hu-
man interferences in the environmental mobilization of these el-
ements at regional to global scales.

Asian dust is the second largest source of dust on Earth.
Observational evidence has suggested that dust originating from
East Asia has a significant global influence (Biscaye et al., 1997; Bory
et al., 2002, 2003; Uno et al., 2009; Maher et al., 2010; Takahashi
et al., 2011). Therefore, specific intrinsic tracers that can estimate
the environmental characteristics of natural emissions and
anthropogenic effects are necessary. In recent decades, the stable-
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isotopic ratios of lead (Pb) and strontium (Sr) isotopes have been
used as naturally occurring tracers to identify dust provenances and
to provide insight regarding the pathways of pollution transport
from a source to a receptor in association with the atmospheric
circulation patterns in ice core studies (Rosman et al., 1993; Biscaye
et al, 1997; Grousset and Biscaye, 2005; Burton et al.,, 2007;
Osterberg et al., 2008; McConnell and Edwards, 2008; Vallelonga
et al., 2010; Lee et al., 2011; Gross et al., 2012; Delmonte et al.,
2013; Bory et al., 2014).

Miaoergou Glacier (43°03'19”N, 94°19'21”E, 4512 m a.s.l.) is
located in the eastern Tienshan, surrounded by the Taklamakan
and Gobi deserts. Because the mountains extend well into the
troposphere, the ice cores from this region can provide a unique
medium for studying the characteristics of well-mixed low- and
mid-tropospheric Asian dust (Nagatsuka et al., 2010; Wu et al,,
2010; Xu et al, 2012; Du et al, 2015). Previous studies have
investigated the alpine ice cores surrounding the Asian desert rim,
and most of the Sr-Nd-Pb isotope measurements were collected
using bulk snow or ice samples (Wu et al., 2010; Yu et al,, 2013).
However, data regarding the origin of radiogenic species in the
soluble fraction of the ice cores in this region do not exist. These
data are required for interpreting the dissolved chemical species
signals of ice cores and can serve as a complementary proxy for
atmospheric data by tracing the sources of these dissolved ele-
ments (Lupker et al., 2010). In this study, the compositions of Sr
and Pb isotopes in dirty layers in the Miaoergou ice core were
measured insoluble and insoluble dust to identify the natural dust
provenances and anthropogenic effects.

2. Sample treatment and measurement
2.1. Sampling treatment

Miaoergou Glacier lies to the north of Hami Basin, which ex-
tends southward from the Karlik Mountains (Fig. 1). In 2005, two
ice cores (~9.4 cm in diameter) to bedrock (58.7 m and 57.6 m in
length for Core 1 and Core 2, respectively) were obtained from a
dome on the Miaoergou Glacier. The Core 1 was split axially into
two equal halves. One half was used in this study and Du et al.
(2015), and the other was archived. The difference in length of
two ice cores is negligible, primarily due to the bottom topography
of glacier. Therefore, Core 1 was dated (Liu et al., 2011). The net
accumulation rate of the Miaoergou glacier is 20 cm ice equiva-
lent/year (Li et al., 2007a). Therefore, 6 subsamples were collected
at intervals of approximately 20—30 cm so that the time span of
each subsample was approximately one or two years. Du et al.
(2015) described the environmental setting and climatic charac-
teristics of the study site. The decontaminated ice samples were
melted at 20 °C under clean room conditions using a class 100
laminar flow bench. Next, the insoluble dust in the ice core was
extracted using low protein adsorption hydrophilic polytetra-
fluoroethylene (PTFE, Whatman) membrane filters (Millipore
Corporation, with a diameter of 47 mm and pore size of 0.2 pm).
Acid-cleaned low density polyethylene (LDPE) bottles were used
to collect the filtrate, which was defined as soluble dust in this
study (Table 1). The volume of ice samples varies from 187 to
250 ml, while the insoluble dust mass in the 6 subsamples range
from 16 to 45 mg.

The depths of our six subsamples are shown in Table 1. The six
samples were dated from top to bottom as follows: 2000 AD, 1991
AD, 1983 AD, 1977 AD, 1962 AD and 1958 AD, yielding an estimated
dating uncertainty of +1 year (Liu et al., 2011).

2.2. Measurements

The filters used to collect insoluble dust were digested in ultra-
pure nitric acid (HNO3), hydrofluoric acid (HF) and perchloric acid
(HClO4) at temperatures of 160—180 °C in PTFE screw-top bombs. In
this study, all the solutions were made using double distilled water
at the Analytical Laboratory at the Beijing Research Institute of
Uranium Geology (ALBRIUG). The detailed digestion method can be
found in the study of Du et al. (2015). Blank filters (collecting
insoluble dust) and filtrate (collecting soluble dust) were processed
similarly. Then, the Sr and Pb concentrations were measured using
inductively coupled plasma mass spectrometry (ELEMENT XR,
Thermo Elemental Corporation). The results showed that the Sr and
Pb concentrations in the blank filter were all less than 1%, while
these concentrations in the filtrate were all less than 5%. The
collected insoluble dust was dissolved in 6 ml (1:1) of HNO3 + 1 ml
HF + 0.1 ml HCIO4 at temperatures of 160—180 °C in PTFE screw-top
bombs before conducting thermal ionization mass spectrometry
(TIMS) analysis. The measurement process has been described in
previous studies (Wu et al., 2010; Yu et al., 2013). Because the Sr and
Pb concentrations in the soluble dust are very low, the instrumental
analyses must be conducted in a clean room. First, approximately
180—250 ml of the filtrate was passed through a 0.2 um filter (PTFE,
Whatman). Second, the filtrate was poured into a 500 ml beaker
and dried in an ultra-clean bench (class 100). The measurement
method of Sr—Pb isotopes in the soluble dust were the same as
those of the insoluble dust. The TIMS measurements of the Sr—Pb
isotopes were carried out at the Analytical Laboratory at ALBRIUG
using an IsoProbe-T spectrometer (GV Corporation). The Pb and Sr
isotope measurements are briefly outlined in this section. First, Pb
was separated using a 100—200 mesh AG1 X8 anion exchange resin
(subsamples were loaded in 0.5 N HBr and Pb was eluted with 6 N
HCI). Second, Sr was purified using a standard cation-exchange
procedure (¢0.5 cm x 15 c¢cm, AG50 WX8 100—200 mesh) and
loaded in 0.5 N HCL Then, Sr was eluted with 2.5 N HCl. The Pb
isotopes were measured using a single Re ribbon with a silica gel
emitter in static multicollection mode. To optimize the instrument
accuracy, the isotope standard samples of NBS 987 strontium and
NBS981 lead (20, n = 10) were used in this study, respectively. The
208pyy206py, 207ppy206ph and 294pb/2%pPh ratios of NBS 981 lead
isotope standard were 0.710229 + 15, 0.914338 + 7 and
0.0591107 + 2, respectively. The Sr isotopes were loaded onto single
Re filaments and a Ta activator in static multicollection mode. The
data were corrected for internal mass biases to 365r/%8sr = 0.1194,
and the 87Sr/®5Sr ratio NBS 987 strontium isotope standard (2o,
n = 10) was 0.710250 + 7, with a recommended value of 0.710248.
The analytical blank was <100 pg for Pb and <200 pg for Sr.

3. Results and discussion
3.1. Pb concentrations record for the different ice cores

The Pb concentrations exhibited significant temporal variations
that ranged from 29.7 to 19471.0 ng/l over the period 1953-2004
AD (Liu et al., 2011). A significant increase in the Pb concentrations
occurred from 1975 to 1985 AD in the Miaoergou ice core, and
another peak occurred in the 1990s (Fig. 2). Similar results were
recorded in the Muztagata ice core (75°06’E, 38°17’N), which was
obtained from eastern Pamirs and located in the border of
Tajikistan, Kyrgyzstan and Kazakhstan in Central Asia (Li et al.,
2006). Fig. 2 reveals that the Pb concentrations exist an increase
trend from 1955 to 1993 AD, with two Pb concentration peaks in
1980s and 1990s (Li et al., 2006). The exhibited Pb concentrations
from Belukha ice core (49°48'N, 86°34'E, 4062 m a.s.l.) were
significantly enhanced during the period 1935-1995 AD and
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Fig. 1. Location map of the Miaoergou Glacier, ice core and snowpit sampling sites (BLH:Belukha Glacier, MSD:Musidao Glacier, TS:Tienshan NO.1 Glacier, MS: Muztagata Glacier,
JMYZ: JiemaYangzong Glacier, QM: East Rongbuk Glacier) and the distribution of deserts in western China.

peaked in the 1970s, this peaked responses to the Europe Pb
emission in past 50 years (Von et al., 2003; Eichler et al., 2012).
However, the data for the East Rongbuk ice core, which was ob-
tained south of the Tibet Plateau, contained trace metals before
~1953 AD that were controlled by mineral dust inputs, with no
discernible volcanic or anthropogenic contributions. Significant

increases in the concentrations and crustal enrichment factors
were observed from the 1970s onward that abruptly increased
during the period 1990—1996 AD (Lee et al., 2011; Hong et al., 2012;
Burn-Nunes et al., 2014).

In this study, we cannot reconstruct the Pb histories before the
1950s for Miaoergou and Muztagata ice cores, but there exists a

Table 1
Sr and Pb isotope ratios for soluble dust and insoluble dust in the Miaoergou ice core.
Age (AD)  Depth (cm) Volume (ml)  Type 875r/%5sr 20 208pp[204pp 20 207pp/204pp 20 206pp204pp  2g
2000 90—120 cm 210 Soluble Dust 0.711031 0.000012 38.034 0.033 15.554 0.014 18.088 0.016
Insoluble Dust 0.718958* 0.000009 38.384 0.004 15.578 0.002 18.409 0.002
1991 332-360 187 Soluble Dust 0.710308 0.000018 38.054 0.013 15.549 0.005 17.971 0.006
Insoluble Dust 0.717025" 0.00001 38.179 0.003 15.571 0.001 18.198 0.002
1983 558—-596 187 Soluble Dust 0.710651 0.000013 38.22 0.033 15.572 0.013 18.182 0.015
Insoluble Dust 0.717455" 0.000014  38.40 0.007 15.579 0.003 18.394 0.003
1977 731-755 250 Soluble Dust 0.710392 0.000016 37.994 0.06 15.57 0.025 17.979 0.029
Insoluble Dust 0.718065* 0.000013 38.288 0.005 15.569 0.002 18.352 0.002
1962 1265—1293 250 Soluble Dust 0.710336 0.000012 37.999 0.039 15.54 0.016 17.962 0.018
Insoluble Dust 0.718013* 0.000011 38.166 0.005 15.56 0.002 18.258 0.002
1958 1508—-1533 190 Soluble Dust 0.709984 0.000016 38.173 0.053 15.606 0.022 18.132 0.025
Insoluble Dust 0.718571* 0.000012 38.34 0.006 15.581 0.003 18.298 0.003

@ Stable Sr isotope data of insoluble dust from Du et al. (2015).
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Fig. 2. Concentration record for Pb in the Miaoergou and Muztagata ice cores (Li et al., 2006; Liu et al., 2011) and the Pb isotopic ratios for the insoluble dust and soluble dust

fractions.

significant increasing trend during the 1970s and the 1980s (Fig. 2).
Pb emission in China distinctly and significantly increased from the
1990s (Fig. 3). Therefore, the variations in the spatial distribution of
the ice cores in Tibetan Plateau (TP), Altai and Tienshan are indic-
ative of the temporal variations in industrialization across South
Asia, Central Asia and Europe (Li et al., 2006; Eichler et al., 2012;
Burn-Nunes et al., 2014).

In 1997, the Chinese government began to phase out leaded
gasoline and decrease Pb emissions (Qin, 2010). However, the Pb
concentrations in the Miaoergou ice core have increased since 2000
compared with the concentrations observed in the 1980s (Fig. 2).
Relatively high Pb concentrations between 1997 and 2002 were
also observed in the East Rongbuk ice core (Lee et al., 2011). This
phenomenon was also demonstrated in Xiamen, China, in which

the annual Pb concentrations in aerosol particles in 2003 increased
by approximately 12% compared with those measured between
1991 and 1993 (Zhu et al., 2010). As shown in Fig. 3, this increase
was probably due to an increase in coal combustion and automobile
production in China (Liu and Zhao, 2006; Li et al., 2006; Qin, 2010;
Li et al., 2012). This finding indicates that the Pb concentrations
continued to increase after 2000, which was when reform and
openness policies were instituted in China.

3.2. Variations in the isotopic compositions of Sr and Pb

Minerals and rocks have distinct Sr and Pb ratios. Because of the
extremely long half-lives of radioactive parents, these tracers can
be considered as “conservative” fingerprints when applied to
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Fig. 3. Historical coal and Pb emission estimates for different regions. The Pb emission data were obtained from Von Storch et al. (2003) and Li et al. (2012), Liu and Zhao. (2006) and

the coal combustion data were acquired from Qin (2010).
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studies conducted over short periods and during transport in the
atmosphere or after deposition as sediments (Grousset and Biscaye,
2005). Previously, researchers evaluated source regions according
to geochemical characteristics by extracting dust from Asian
mountain glaciers (Wu et al,, 2010; Xu et al., 2012; Yu et al., 2013).
However, few studies have focused on the composition of the dust-
free soluble fraction of ice cores by investigating the isotopic
compositions of Sr and Pb (Lupker et al., 2010). The average
875r/86sr ratio in the soluble fraction of the Miaoergou ice core was
0.710450 (ranging from 0.709984 to 0.711031), while of ratio in the
insoluble dust fraction was 0.718015 (ranged from 0.717025 to
0.718958, Du et al., 2015). The 87Sr/80Sr ratios exhibited similar
variation trends in the soluble dust and insoluble dust fractions.
The ratios for the insoluble dust fraction were substantially higher
than those for the soluble dust fraction (Table 1).

204pp provides a “benchmark” for gauging the relative abun-
dance of the remaining Pb isotopes. Both natural and anthropo-
genic Pb isotope tracer series exist (Grousset and Biscaye, 2005).
The former was obtained from tracing the Aeolian sources (Sun and
Zhu, 2010), while the latter utilizes the Pb isotope compositions of
anthropogenic pollutants (Lee et al., 2011). The compositions of the
soluble dust and insoluble dust fractions in the Miaoergou ice core
exhibited the following ranges of Pb isotope ratios: 17.962—18.182
and 18.198-18.409 for 2%6pb/2%pb, 15.540-15.606 and
15.560—15.581 for 2%7Pb/?%4Pb, and 37.994-38.173 and
38.179—-38.384 for 2%8pb/20%Pb, respectively (Table 1). The soluble
Pb data can be compared with snow and ice results from Central
Asia glaciers (Yu et al., 2013). The 2%6Pb/2%7Pb ratios of the soluble
dust and insoluble dust fractions followed similar trends. The ratios
of the insoluble dust fraction were significantly higher than those of
the soluble dust fraction (Fig. 2).

3.3. Evidence of natural vs. anthropogenic Sr and Pb inputs to the
Miaoergou ice core

Leaching experiments for the loess from the Chinese Loess
Plateau revealed identical 37Sr/®6Sr ratios for water and HOAc-
soluble minerals (Yokoo et al., 2004). Nagatsuka et al. (2010)
demonstrated this phenomenon using surface dust from Uriimgqi
Glacier No. 1 (located on the eastern side of the Tienshan). The
875r/35sr ratios for the insoluble dust fraction in the ice core were
comparable with the 87Sr/26Sr ratios of loess and Gobi samples.
However, there were only two samples from the loess source
(Biscaye et al., 1997; Widory et al., 2010). Therefore, it requires
further demonstrate investigation in future. The ®/Sr/®%Sr and
206pp, 207pp ratios for the soluble fraction in the Miaoergou ice core
were similar to those for Chinese coal combustion and cement
factories (Fig. 4).

The Sr isotope ratios for the soluble fraction in the Miaoergou ice
core were higher than the Sr isotope ratios for the soluble fraction
in seawater (0.70917, Dia et al., 1992), which indicates a contribu-
tion from at least one radiogenic Sr source. The Miaoergou Glacier is
located in arid and semi-arid areas of northwestern China with
sparse native vegetation and snow accumulation occurring during
the winter and spring. Consequently, plants are an unlikely primary
source of Sr in this region. The 37Sr/®%Sr ratios in water-soluble
sands from the Taklamakan desert ranged from 0.710902 to
0.711906 (Nakano et al., 2004), these results are similar with the
data as presented in this study (Table 1). Viewed from the topo-
graphic characteristics, the Miaoergou Glacier is located along the
northeastern edge of the Taklamakan desert (Fig. 1), therefore, it
could be a natural source of dust for the glacier. The present study
further supports our previous observation (Du et al., 2015).

The second non-sea salt end-member is a probable anthropo-
genic input. Higher trace metal concentrations were recorded in

Uriimqi Glacier No. 1 in eastern Tienshan (Li et al., 2007b). The
pollutants from fossil fuel combustion, coal and other fossil fuels
are extensively applied for urban heating during late autumn and
winter (Li et al., 2007b). Previously, the 87Sr/%0Sr ratio in water-
soluble sands from Uriimqi City, which is approximately 600 km
from Miaoergou Glacier, was 0.709510 (Nakano et al., 2004). This
result shows the atmospheric pollutants from Uriimgi City may be
transported along prevailing westerlies and with low-level regional
atmospheric circulation and then their deposit in eastern Tienshan.
Data from previous studies have suggested that the 87Sr/30Sr ratio
ranges between 0.7083 and 0.7335 for urban heating and between
0.7097 and 0.7100 for incinerators in the Parisian (France) atmo-
sphere (Negrel et al., 2007). Although no data are available for
western Chinese cities, the 87Sr/0Sr ratios for aerosol particles
(Fig. 4) range between 0.708970 and 0.709492 for coal combustion
and between 0.709963 and 0.712064 for cement factories and
smelting in Beijing (Widory et al., 2010). These Sr isotopic ratios for
anthropogenic pollution (including urban heating and incinerators)
may overlap with the Aeolian dust ratios (Taklamakan desert), but
the Sr isotope ratios for the soluble dust fraction are similar to the
ratios observed for anthropogenic pollution.

The 2%6pb/207Pb ratios in the soluble fraction in the Miaoergou
subsamples (1977 AD and 1991 AD) were substantially less radio-
genic, whereas the Pb concentrations in Miaoergou ice core reach
maximum values for the two subsamples. Although a few Pb iso-
topic data in this study, the composite record of lead 2°6Pb/2%’Pb
isotopic ratios showed that there are coincident with similar
gradual changes in Pb concentration (Fig. 2). Particularly, the
206pp207ph ratios in the soluble fraction support the idea that an
additional unradiogenic Pb-rich end-member or at least an
anthropogenic Pb-rich end-member is an influential factor (Fig. 4).
These results may imply that the Sr and Pb isotopes in the soluble
fraction contain more anthropogenic information and are consis-
tent with anthropogenic sources, which are more radiogenic.
Conversely, these two isotopes in the insoluble dust fraction indi-
cate natural Aeolian dust/desert signals.

Because the atmosphere transport pattern over eastern Tien-
shan is characterized by a predominantly westerly flow along the
Pamirs and Tienshan Mountains throughout the year, an impetus
for Aeolian dust transportation is prevalent (Fig. 5). The westerlies
are split into three distinct branches due to forcing induced by the
TP (Yao et al., 2012). The two northern branches influence the
Tienshan region, and the wind speeds during spring and summer
reach maximum and minimum values at 700 mb (Fig. 5). The air
masses from East Asia may weaken the westerlies during the
summer, and air mass channels exist between the Halikun (Miaoer
Glacier) and Barkol Mountains. Therefore, the air masses from the
north are deflected into this region. Particularly, sandstorms
frequently occur during the winter and spring. This phenomenon is
also confirmed by the wind vectors and circulation patterns over
western China (Fig. 5). These meteorological and topography fea-
tures provide aeolian dust transport conditions for this region.

3.4. Comparison of Sr—Pb isotopes data with alpine and Greenland
snow and ice cores

Yu et al. (2013) used cluster statistics to study Pb isotope data
from mountain glaciers in western China and identified four
similar and distinct groups. However, to emphasis the character-
istics of climate systems, the spatial distributions of the glaciers
and the Pb isotopic ratios (Figs. 1, 5 and 6), three distinct groups
were determined in this study. Group 1 consists of samples from
the southern TP, including the East Rongbuk and JiemaYangzong
glaciers, which are located along the northern slope of the
Himalayas and have high 2°®Pb/2%7Pb ratios (average of 1.1834).
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Group 2 consists of samples from the Muztagata, Tienshan No. 1,
and Laohugou glaciers, which are located near East Asian deserts.
The mean 2°°Pb/?%’Pb ratio in the Muztagata, Tianshan and Lao-
hugou snowpits is 1.1801. Group 3 consists of samples from
Musidao Glacier, which is located on the northern boundary of
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western China (Fig. 1) and has a lower 2°°Pb/2%’Pb ratio (average of
1.1616). The lead isotopic ratios followed three patterns that were
consistent with the atmospheric circulation pattern (northern,
central and southern westerlies) and the glacier distribution.
These results provide information regarding the sources of Pb in
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Fig. 5. Seasonal average wind vectors (m/sec) at 700 mb from 1971 to 2000 based on the NCEP/NCAR reanalysis. Spring = JFM, Summer = JJA, Autumn = SON, Winter = DJF. The

location of Miaoergou is noted with a black circle.
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Fig. 6. Comparison of the Pb isotopic Miaoergou insoluble dust results with the Pb isotopic compositions of the other snowpits from Laohugou NO.12, Tienshan NO.1, Musidao,

Muztagata (Yu et al., 2013), and NGRIP (Bory et al., 2013).

the snow and ice, which are controlled by climatic and environ-
mental factors.

For group 1 glaciers, the East Rongbuk and JiemaYangzong
glaciers are located on the southern TP. The topographic charac-
teristics of this region are distinct from the northern TP. The ele-
vations of the two glaciers are high, and the transport of the aeolian
dust from the northern slope of the TP to these regions is difficult.
Recent results have demonstrated that air pollutants from the
lowlands of South Asia can be transported across the Himalayas via
the mountain/valley wind system (Cong et al., 2015). The glaciers of
Group 2 are located west of the Taklamakan desert. Aeolian dust,
which frequently occurs in this region, is deposited on the surfaces
of these sparsely populated and remote glaciers (e.g., Muztagata
Glacier) via dry and wet deposition. The Tienshan No. 1 and
Miaoergou glaciers are located northeast of the Taklamakan desert
and near Uriimqi City, which is the largest population centre in
western China. The Laohugou Glacier is located east of the Takla-
makan desert and adjacent to Dunhuang City. Previous studies have
shown that the chemical ions in the aerosol particles obtained from
Laohugou Glacier indicate that the anthropogenic aerosols origi-
nated from low-elevation urban areas, including Dunhuang City
(Xu et al., 2014). The 2°6Pb/2%7Pb ratios for these three glaciers are
also comparable with the 2%Pb/27Pb ratios from Chinese coal
combustion (1.156—1.200) and indicate the emissions of anthro-
pogenic lead-based substances into the atmosphere in these re-
gions. The Musidao Glacier of Group 3 is located near Belukha
Glacier, the mean 2%Pb/?%’Pb ratio in the Belukha ice core from
1935 to 1995 AD is 1.153, which is similar to the value obtained for
the Musidao snowpit (1.1616). Therefore, similar anthropogenic
sources originating from lead ore mining in Altai and industrial
emissions in Russia and Eastern Europe existed for both glaciers
(Eichle et al., 2012).

By applying the geochemical characteristics of the aeolian
mineral dust recorded in Greenland ice cores, the results had
demonstrated the dust for Greenland ice sheet originated from the
Gobi and TakliMakan desert during the last glacial period (Svensson

et al., 2000; Ruth et al., 2007). This result indicates a direct link
between the Asian mountain and Greenland ice cores. The average
875r/86sr ratio in the soluble fraction of the Dye-3 ice core was
0.710450, while the ratios in the insoluble dust fraction ranged
from 0.712406 to 0.720226 (Lupker et al., 2010). The small varia-
tions in the 87Sr/%8Sr ratio between the Miaoergou and Greenland
ice cores indicated that a common dust source exists for the two
regions. More importantly, these variations indicated similarities
between the two ice cores and demonstrated that Asian deserts are
likely the main source of aeolian dust for the Greenland ice sheet
(Biscaye et al., 1997; Bory et al., 2002, 2003; Burton et al., 2007). The
compositions of Pb isotopes in the soluble fraction in the Miaoer-
gou ice core were similar to those observed in the NGRIP snowpits
(Fig. 6). Bory et al. (2014) had indicated that Chinese aerosols ac-
count for a substantial and growing fraction of the insoluble
anthropogenic Pb that has been deposited in central Greenland
over the last few decades of the twentieth century. These results
suggest that aeolian dust and anthropogenic Pb from East Asia are
transported to Greenland.

3.5. Estimation of Natural and anthropogenic contributions to the
Miaoergou ice core

Many studies have noted that the geochemical characteristics of
background Pb usually yield high 2°°Pb/2°’Pb ratios, while the Pb
from recent industrial sources yields low 2°6Pb/?°7Pb ratios
(Bollhoefer and Rosman, 2002). The East Rongbuk ice core from the
Himalayas showed that the isotopic signal of the regional natural
background Pb (~1.20 for 2°6Pb/297Pb) in the central Himalayas. The
Pb concentration significantly increased, and lower 2°Pb/?%Pb
ratios were present in the 1970s (Hong et al., 2009; Kaspari et al.,
2009; Lee et al, 2011; Burn-Nunes et al., 2014). The 2°pPb/2%7Pb
ratios from Belukha ice core were significantly enhanced during the
period 1935-1995 AD due to the use of Pb additives in Russian
gasoline that was mined in the Rudny Altai (Eichle et al., 2012). In
this study, the oldest subsamples were dated 1956 AD (Table 1),
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potentially due to increasing anthropogenic influence. Therefore,
studies should not only consider mineral dust inputs but also
anthropogenic effects. To infer the spatial changes in Pb sources, we
compared the Pb isotopic ratios in this study with those of the
mineral dust from potential source areas (PSAs) and anthropogenic
sources from coal combustion, lead ore and leaded gasoline by
using a three-isotope plot (Fig. 7).

The Aeolian dust samples from the Taklamakan and Gobi deserts
have 2%6pb/2%7Pb ratios of 1.187—1.209 and 1.195—1.203, respec-
tively (Biscaye et al., 1997; Li, 2007; Ferrat et al., 2012; Bory et al,,
2014). These ranges correspond with the data obtained for
Miaoergou insoluble dust, which suggests the presence of natural
Aeolian dust sources. The 2°6Pb/2%7Pb ratios of southern Tienshan
and Rudny Altai lead ores range from 1.147 to 1.148 and from 1.139
to 1.156, respectively, which are similar to the ratios that were
obtained for the soluble fraction in this study (Mukai et al., 2001;
Zhang et al., 2010). The Tienshan Mountains are considered one
of the most important metallogenic regions in China, and the
geologic characteristics of this region are beneficial for mining Pb
and Zn mineral deposits. In recent decades, Pb ore mining has
increased (Bollhofer and Rosman, 2000; Ding et al., 2010). The Altai
region has been subject to mining activities since the Bronze Age
(Grushin et al., 2009). In Rudny Altai, vast polymetallic deposits
containing massive Pb, Cu, Zn, Au, Ag, and Fe sulphide ores were
discovered within an area of approximately 30000—50000 km?
(Farmer and Farmer, 2000; D'yachkov et al., 2009). The 2°6Pb/2%7Pb
ratios for Chinese coal combustion range from 1.156 to 1.200 (Mukai
etal., 1993; Chen et al., 2005). The Zhundong coalfield is a very large
coal deposit (164 Gt of coal reserves) located in the eastern coal-
bearing area of the Junggar basin, which is within the Xinjiang
autonomous region, and is currently under exploration and is ex-
pected to be an important coal mining resource in western China
(Zhou et al., 2010). Urumgji, the capital city of Xinjiang, is one of the
most polluted cities in the world. Coalfield fires are surface fires
that occur in seams and can occur in open-pit mines. The coal mine
fires at private and government mines include underground and
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surface fires that emit significant Pb into the atmosphere (Stracher
and Taylor, 2004; Diaz-Somoano et al., 2009). The gasoline-related
(including vehicle exhaust particles and gasoline samples)
206pp207ph ratio for Shanghai ranges from 1.120 to 1.139, and the
average 2%7Pb/?%®Pb ratio of leaded gasoline is 1.143 in Russia
(Zheng et al., 2004; Eichler et al., 2012). Although leaded gasoline
has been phased out in recent decades, coal emissions and auto-
mobile production have continuously increased in recent years,
which have potentially contributed to Pb pollution in this region.
These results indicate that the Pb isotope ratio is derived from
anthropogenic sources that may change the Pb isotopic composi-
tion. For the Miaoergou Glacier, the anthropogenic sources of Pb are
primarily derived from the surrounding lead ore, Chinese coal
combustion, and leaded gasoline.

The Pb isotope ratios in the insoluble dust fraction of the
Miaoergou ice core are similar to those in desert sources. The sol-
uble dust primarily originates from anthropogenic sources,
including lead ore, Chinese coal, leaded gasoline, and smelter and
cement factories (Figs. 4 and 7). Because not enough Sr isotope data
are available, the contributions from each source are estimated
using the available Pb isotope data. The Pb isotope ratios of the ice
core and source-related samples are shown in Fig. 7. This approach
allows us to approximately estimate the contributions from natural
and anthropogenic sources by using Pb isotopic signatures in the
subsamples (Anderson et al., 2002; Chiaradia and Cupelin, 2000).
Based on the abundances of 2°6Pb, 297Pb, and 2°8Pb measured in the
ice core subsamples, the contributions from the three major Pb
sources can be apportioned. We obtained an approximate estimate
for the contributions from deserts, lead ore and Chinese coal
combustion for insoluble dust and the mixed anthropogenic
contribution of lead ore, Chinese coal combustion and leaded gas-
oline for soluble dust using a ternary mixing equation (Cheng and
Hu, 2010). Therefore, the Pb sources identified in this study can
be divided into four groups: desert dust, which has a low
207pp296ph ratio; Chinese coal combustion; lead ore; and leaded
gasoline.

Tienshan Ore

Altay Ore

China coal combustion
Russia Gasoline

China gasoline
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Fig. 7. Lead isotopic compositions of the insoluble dust from the ice of the Miaoergou ice core. In addition, the Pb isotopic ratios of ores from Tian Shan, Kazakhstan and Rudny Altai
are shown (Zhu, 1995; Zhang et al., 2010), and the Pb isotopic ratios of samples from the Taklimakan desert, Gobi desert, Russian coal (Biscaye et al., 1997; Mukai et al., 2001; Li,
2007; Bory et al., 2014), leaded vehicle exhaust and gasoline are shown (Mukai et al., 2001; Chen et al., 2005).
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where (2%7Pb/?%6Pb)gust and (2°8Pb/2°°Pb)qus; represent the average
ratios for insoluble dust; (2°7Pb/2%Pb)fitrate and (2°6Pb/2%6Pb)sitrate
represent the average ratios for soluble dust; (2°’Pb/?°°Pb)pys: and
(298pb296ph)p st represent the average ratios for the Taklamakan
and Gobi deserts (0.8330; 2.0650. Li, 2007; Biscaye et al., 1997);
(?97Pb/2%6Pb)gre and (2°8Pb/?°°Pb)gre denote the average ratios for
Tienshan and Rudny Altai (0.8700; 2.1150. Zhang et al., 2012; Mukai
et al, 2001); (?°7Pb/?°®Pb)coal and (2°8Pb/?%6Pb)coa denote the
average ratios for Chinese coal (0.8488, 2.1000. Mukai et al., 1993);
and (*°7Pb/?%Pb)casoline and (2°8Pb/2%6Pb)gasoline denote the
average ratios for Chinese and Russian gasoline (0.8800, 2.1250;
Mukai et al., 2001; Yang et al., 2005). The subscripts Dust, Ore, Coal
and Gasoline represent the major sources, and fDust, fOre, fCoal and
fGasoline represent their relative contributions. The results indicate
that the contributions from deserts, lead ore and coal combustion
account for approximately 46%, 40% and 14% of the insoluble dust,
respectively, and that the contributions from lead ore, coal com-
bustion and leaded gasoline account for approximately 37%, 45%
and 18% of the soluble dust, respectively. Therefore, lead ore and
Chinese coal combustion are the main sources of pollution for the
Miaoergou ice core. Because the ice core is located far from human
activities and because gasoline pollution is prominent, these factors
may be limited.

4. Conclusions

This study reveals that the Sr and Pb isotopic ratios preserved in
an ice core from Miaoergou Glacier represent distinctive
geographic characteristics of the ratios between natural aeolian
dust provenances and anthropogenic sources. The PSAs were
identified with the Sr and Pb isotopic ratios for insoluble dust,
originating from the Taklamakan and Gobi deserts. The Pb isotopic
ratios of the soluble dust revealed that the ratios changed due to
anthropogenic sources, such as lead ore, coal combustion, and
leaded gasoline. These results show that the Pb isotopes are well
suited as tracers because their ratios exhibit pronounced differ-
ences in different media.
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