
1 Introduction 
 
Most modern glaciers, except for those located in the 

polar regions, are located on the Tibetan Plateau; the 
Tibetan  Plateau  also  displays  the  largest  number  of 
developmental  stages  of  Quaternary  glaciers,  and  the 
largest number of preserved ancient glacial relics is found 
there (Dyurgerov and Meier, 2005; Zhao Jingdong et al., 
2009; Owen and Dortch, 2014; Yao Tandong et al., 2017). 

Studying the temporal and spatial changes in the glaciers 
on the Tibetan Plateau during the Quaternary is of great 
significance in paleo-environmental reconstructions and 
increasing our understanding of environmental changes on 
the hemispheric and even global scales (Heyman et al., 
2011b; Wang Jian et al., 2012). As the in situ terrestrial 
cosmogenic  nuclide  (TCN)  dating  method  has  been 
developed (Dyke et al., 2002; Zhou Shangzhe and Li 
Jijun, 2003), it has become one of the most successful 
techniques  used  to  determine  the  ages  of  Quaternary 
glacial landforms (Wu Zhonghai et al., 2003; Kong et al., 
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emerge during the Holocene, and the peaks correspond to the Little Ice Age, the 8.2 ka and 9.3 ka cold 
events; the main peak covers the period between 12 and 18 ka. (2) In most areas, the newer versions of 
the calculator produce older 10Be exposure ages. When different versions of the CRONUS-Earth 
calculator are used, approximately 29% of the 10Be exposure ages display maximum differences greater 
than 10 ka, and the maximum age difference for a single sample is 181.1 ka.  
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2009a; Owen, 2009b; Li et al., 2011; Zhang et al., 2014c, 
2015).  TCN  surface  exposure  dating  enables 
reconstruction  of  the  Quaternary  history  of  glacial 
fluctuations  and  reveals  the  characteristics  of  climate 
changes on the Tibetan Plateau and in the adjacent areas 
(Wang Jie and Zhou Shangzhe, 2009; Heyman et al., 
2011b; Heyman, 2014; Owen et al.,  2012; Owen and 
Dortch, 2014; Wang et al., 2013). 

However,  due to  the  effects  of  the  geological  and 
geomorphological characteristics of sampling sites and 
dating techniques (Lal, 1991; Gosse and Phillips, 2001; 
Briner et al., 2005; Zech et al., 2005b), TCN surface 
exposure  dating  includes  substantial  uncertainties. 
Complex  geological  and  geomorphological  processes, 
sampling  and  post-processing  procedures  and  surface 
erosion rates affect the accuracy of TCN surface exposure 
dating (Owen, 2009b; Zhao Jingdong et al., 2013; Zhang 
Zhigang et al., 2014a; Xin Chunlei, 2016). Furthermore, as 
the Cosmic-Ray prOduced NUclide Systematics on Earth 
(CRONUS-Earth)  online  calculator  is  progressively 
updated, the differences among versions of the calculator 
also affect the dating results. These differences lead to 
controversies in comparisons of reconstructions of the 
chronology  of  the  Quaternary  history  of  glacial 
fluctuations  on  the  Tibetan  Plateau  and  the  glacial 
advances  in  different  regions.  Therefore,  it  is  very 
important to unify all of the 10Be dating results obtained 
from the different regions on the Tibetan Plateau. Many 
scholars have summarized the chronological data obtained 
from glacial landforms on the Tibetan Plateau (Chevalier 
et al., 2011; Heyman, 2014; Owen and Dortch, 2014). The 
CRONUS-Earth  online  calculator  (http://
hess.ess.washington.edu)  can  be  used  to  calculate 
cosmogenic nuclide surface exposure ages. Previously, 
scholars  employed version 2.2 of  the CRONUS-Earth 
calculator to calculate TCN exposure ages. As this version 
has been updated, it has become necessary to use more 
accurate and stable versions of the calculator to recalculate 
previous TCN data (Borchers et al., 2016; Marrero et al., 
2016; Balco, 2017). In addition, different versions of the 
CRONUS-Earth calculator yield different results for the 
same sample. Assessing these differences and their effects 
on the TCN surface exposure ages is key in establishing 
an  accurate  chronology  of  the  history  of  glacial 
fluctuations  on  the  Tibetan Plateau.  Accordingly,  this 
article examines the impact of different versions of the 
CRONUS-Earth calculator on the exposure ages obtained 
from Quaternary glacial landforms on the Tibetan Plateau 
and within the surrounding area using the TCN 10Be from 
1999 to 2017 and explores some existing problems. This 
research will provide a new reference for the application 
of  the  TCN  surface  exposure  dating  method  in  the 

establishment of accurate chronological frameworks for 
the history of glacial fluctuations. 

 
2 Study Area and Data Collection 
 

The Tibetan Plateau is called “the roof of the world” 
and “the third pole”, which caused by the Indian-Eruasian 
continental collision since 50 million years ago, forms the 
youngest and highest altitude Plateau on Earth. A large 
number of geophysical and geological surveys have found 
that the major tectonic features of the Tibetan Plateau 
show a significant difference between north and south 
directions, and is divided into several terranes by faults 
and suture (Fig. 1). (Shi Yafeng et al., 1999a; Kind et al., 
2002; Zheng Du and Yao Tandong, 2004; Zhou et al., 
2005; Li et al., 2016a; Tang et al., 2016; Zhang et al., 
2016). The Tibetan Plateau stretches from the Himalayan 
Mountains in the south to the Kunlun, Altun and Qilian 
Mountains in the north and from the Pamirs and the Hindu 
Kush to the west  to the western part  of  the Qinling 
Mountains and the Loess Plateau to the east and northeast. 
The average altitude of the Tibetan Plateau is over 4000 
m,  and  its  glacier-covered  area  is  approximately  47 
thousand km2, which accounts for more than 80% of the 
total area of glaciers in the country. The Tibetan Plateau 
contains the largest extent of modern glaciers outside of 
the polar regions (Owen and Dortch, 2014; Yao Tandong 
et al., 2017; Chen Guohui and Ma Ling, 2017). For this 
study, we collected 1848 10Be ages obtained from the 
Tibetan  Plateau  and  the  peripheral  mountain  ranges 
published from 1999 to 2017 in 56 articles. We extracted 
the information relevant to TCN exposure dating for the 
sampling locations (latitude, longitude, altitude, altitude 
flag, sample thickness and density, shielding correction 
and erosion) and the measured parameters (concentration 
of 10Be, uncertainty in 10Be concentration, and name of 
10Be standardization). The distributions of these data are 
shown in Figure 2. The data were collected within an area 
that extends from 27.04°N to 43.74°N and from 69.50°E 
to 102.74°E; the corresponding study areas (1–36) are 
shown in Table 1. Most (1798; approximately 97.3%) of 
the samples were collected from boulders; samples from 
cobbles  (22;  approximately  0.8% ),  bedrock  (15; 
approximately  1.2% ),  roches  moutonnées  (7; 
approximately 0.4%) and sediments (6;  approximately 
0.3%) make up a small part of the dataset. 

 
3 Methods 
 
3.1 Calculation of 10Be exposure ages using different 
versions of the calculator 

The  CRONUS-Earth  online  calculator  (http://
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hess.ess.washington.edu) computes exposure ages (Balco 
et al., 2008). According to the naming scheme used by the 
developer, the original online calculator is called 2008-V2. 
However,  some of  the  parameter  values  used in  this 
version  are  inaccurate,  which  will  have  a  significant 
impact  on  exposure  dating.  A  revised  and  improved 
version,  2008-V2.2  (here  called  version  2.2),  was 

published in 2009 and was in use until August 2016. 
CRONUS-2016 was subsequently developed. This version 
of the calculator incorporates seven different production 
rate scaling models and uses more complex and accurate 
representations of physical processes and is thus more 
accurate than previous versions (Marrero et al., 2016). 
Nevertheless, users still have considerable demand for 

 

Fig. 1. Topographic map of Tibetan Plateau and surrounding areas (modified from Kind et al., 2002).  

Fig. 2. The location of published TCN 10Be exposure age studies of Tibetan Plateau (modified from Wang et al., 2013).  
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version 2.2, and 2008-V2.3 (here called version 2.3) was 
thus  developed.  In  most  practical  applications,  V2.3 
displays the same level of accuracy as CRONUS-2016 in 
calculating  exposure  ages  (Borchers  et  al.,  2016).  In 
March 2017, the latest version of the online calculator 
(version  3.0),  was  published  to  permit  more  rapid 
calculations  of  exposure  ages.  While  it  maintains 
acceptable accuracy, its accuracy and reliability have not 
been widely tested (Balco, 2017). Therefore, in this paper, 
version 2.3 of the CRONUS-Earth calculator (effective 
August 2016), which is relatively accurate and stable, is 
used to recalculate previously published 10Be ages of 
glacial landforms on the Tibetan Plateau. Moreover, the 
10Be exposure ages of 1594 samples are calculated using 
three different versions of the calculator, 2.2, 2.3 and 3.0, 
to enable comparison of the differences that result. The 
exposure ages calculated using version 2.0 are derived 
from the work of Zhang Zhigang et al. (2014b) (Now, 
version  2.2  has  been  removed  from  http://
hess.ess.washington.edu), whereas versions 2.3 and 3.0 of 

the  calculator  are  available  online.  To  compare  the 
differences in the exposure ages calculated using the three 
different versions of the calculator more accurately; the 
production rate model of Lal (1991) and Stone (2000) is 
used to calculate the ages. 

 
3.2 Calculation of the dispersion of 10Be exposure ages 

The exposure ages obtained using different versions of 
the CRONUS-Earth calculator for a single sample (for 
which  the  sampling  environment  and  the  measured 
parameters of the sample remain unchanged) vary, due to 
the  continuous  updating  of  the  calculator  by  its 
developers. This article uses the coefficient of variation to 
explore the dispersion among the exposure ages calculated 
for individual samples using versions 2.2, 2.3, and 3.0 of 
the  calculator.  The  coefficient  of  variation  is  a 
dimensionless quantity whose size is affected by the mean 
and standard deviation. A small coefficient of variation 
indicates that the data display little spread, whereas a large 
coefficient of variation indicates that the data are widely 

 Table 1 Information of TCN 10Be exposure ages studies of Tibetan Plateau 
No study region publication No study region publication No study region publication 

1 Alay Mount  
Turestan Range Abramowski et al., 2006 13 Everest 

Aoki and Imamura, 1999; 
Finkel et al., 2003; 
Owen et al., 2009a; 
Chevalier et al., 2011 

25 Shaluli Shan 

Schäfer, 2000,  
Schäfer et al., 2002; 
Wang et al., 2006; 
Graf et al., 2008; 
Fu et al., 2013

2 Pamirs Mount 

Zech et al., 2005a; 
Abramowski et al., 2006; 
Seong et al., 2009; 
Owen et al., 2012; 
Grin et al., 2016; 
Stübner et al., 2017 

14 Bodui Zangbo  
River Zhou et al., 2007, 2010 26 Anyemaqen Owen et al., 2003a 

3 Naga Parbet Phillips et al., 2000 15 Hengduan Mount 

Tschudi et al., 2003;  
Owen et al., 2005;  
Kong et al., 2009b; 
Strasky et al., 2009 

27 Nianbaoyeze Owen et al., 2003a 

4 Karakoram and  
Ladakh Range 

Brown et al., 2002; 
Owen et al., 2002, 2006a;  
Seong et al., 2007; 
Dortch et al., 2010 

16 Gular Mandhata Owen et al.,2010; 
Chevalier et al., 2011 28 Laji Mount Owen et al., 2003b

5 Zanskar  
Range Hedrick et al., 2011 17 Kailas Range Chevalier et al., 2011 29 Qilian 

Mount 
Lasserre et al.,2002;
Owen et al., 2003c 

6 Ayliari Range Chevalier et al., 2011 18 Ama Drime  
Range Chevalier et al., 2011 30 Dalijia Shan Wang et al., 2013 

7 Altyn Mount Mériaux et al., 2004 19 Xainza Range Chevalier et al., 2011 31 Mount  
Jaggang Dong et al., 2017a 

8 Lahul 
Himalayas Owen et al., 2001 20 Karola Pass Owen et al., 2005 32

Eastern 
Himalayan  
syntaxis 

Hu et al., 2016 

9 

Garhwal 
Himalayas and 
Bandarunch  
Range 

Barnard et al., 2004; 
Scherler et al., 2010 21 Nyainqentanggula

Owen et al., 2005; 
Chevalier et al., 2011; 
Dong et al., 2014, 2017b

33
Himalayane 
Tibetan  
orogen 

Murari et al., 2014 

10 Annapurna  
Range 

Abramowski, 2004;  
Pratt-Sitaula, 2005; 
Zech et al., 2009 

22 Tanggula Shan 
Schäfer et al., 2002; 
Owen et al., 2005;  
Colgan et al., 2006

34
South 
Tibetan  
graben 

Rades et al., 2015 

11 Ganesh  
Himalayas Gayer et al., 2006 23 Eastern Kunlun  

Mount Owen et al., 2006b 35 Tian Shan 
Mount 

Li et al., 2014; 
Lifton et al., 2014; 
Li et al., 2016b

12 Langtang  
Himalayas 

Abramowski, 2004; 
Barnard et al., 2006;  
Schaefer et al., 2008 

24 Bayan Har Shan Heyman et al., 2011b 36 Tashkurgan 
Valley Xu et al., 2013 
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dispersed. Under normal circumstances, a coefficient of 
variation  greater  than  1  indicates  strong  variation;  a 
coefficient  of  variation  between  0.1  to  1  indicates 
moderate variation; and a coefficient of variation less than 
0.1 indicates weak variation (Yonker et al., 1998). The 
formula is as follows (Cressie, 1992): 

where C.V is the coefficient of variation, σ is the sample 
standard deviation, and μ is the sample mean. 

In addition, this paper also uses box plots and probability 
density curves to analyze the 10Be exposure ages. 

 
4 Results 
 
4.1 TCN dating results 

Because version 2.3 is relatively accurate and stable, 
1848 10Be exposure ages are recalculated using version 
2.3,  and the statistical  results  are shown in Table 2. 
Approximately 93% of the exposure ages are less than 130 
ka, whereas approximately 97% of the chronological data 
are less than 200 ka. According to the method adopted by 

Wang et al. (2013), the study area is divided into 36 
different areas (Fig. 2). The distribution of 10Be exposure 
ages in different areas is shown in Figure 3.  

To further determine the possible timing of glacier 
advances and retreats on the Tibetan Plateau and in its 
peripheral  mountain  ranges,  the  1848  10Be  ages  are 
analyzed using probability density curves. The results are 
shown in Figure 4. As seen in Figure 4a, the probability 
density curves display large numbers of local minima 
during the Holocene, and the peak values correspond to 
the Little Ice Age and the 8.2 ka and 9.3 ka cold events. 
Figure 4b does not display a primary peak corresponding 
to the Last Glacial Maximum (approximately 21 ka) on 
the Tibetan Plateau, and the main peak covers the period 
that extends from 12 to 18 ka. Figure 4c shows that young 
landforms are frequently better preserved than landscapes 
as a whole, and sampling is easier and more commonly 
performed on young landforms. 

 
4.2  The  results  of  using  different  versions  of  the 
calculator to estimate 10Be exposure ages 
4.2.1 The overall differences in the 10Be exposure ages 
among different versions of the calculator 

.C V σ
μ

= 

 

Fig. 3. Comparison of TCN 10Be exposure ages among different regions on the Tibetan Plateau. 
(a), Distribution of TCN 10Be exposure ages; (b), δ18O record from the Guliya ice core (Thompson et al., 1997); (c), The stacked Benthic δ18O curve 
for the past 650 ka (Lisiecki and Raymo, 2005).  

Table 2 Statistical results of TCN 10Be exposure ages in Tibetan Plateau 
Age range (ka) <14 14–29 29–57 57–71 71–130 130–191 191–243 

MIS Stage MIS1 MIS2 MIS3 MIS4 MIS5 MIS6 MIS7 
Quantity (PCS) 637 531 296 75 176 73 24
Proportion (%) 34.5 28.7 16.0 4.1 9.5 4.0 1.3 

    
Age range (ka) 243–300 300–337 337–374 374–424 424–478 478–533 563–621

MIS Stage MIS8 MIS9 MIS10 MIS11 MIS12 MIS13 MIS15 
Quantity (PCS) 16 5 5 2 5 2 1
Proportion(%) 0.9 0.3 0.3 0.1 0.3 0.1 0.1 
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  In this paper, 1594 TCN exposure ages obtained from 
study areas  1–30 were selected  to  calculate  the  10Be 
exposure ages using the three different versions of the 
calculator. Due to the differences between regions, the 
data cannot be compared directly. Therefore, 9 of the 
study areas were selected at random, and box plots were 
made for each study area (shown in Fig. 5). The box plots 
show the maximum, minimum, and median of the 10Be 
exposure ages within each study area, as well as the upper 
and lower quartiles. According to the overall observations 
reported  in  the  9  randomly  selected  studies  in  most 
regions, the newer versions of the CRONUS-Earth online 
calculator yield older 10Be exposure ages for individual 
samples. 
 
4.2.2 Degree of dispersion of the 10Be exposure ages 
obtained using different versions of the calculator 
  Keeping  the  sampling  conditions  and  measured 
parameters for each sample unchanged, the 10Be exposure 
ages obtained using the three different versions of the 

calculator are analyzed using the coefficient of variation; 
the results are shown in Figure 6a. The coefficients of 
variation of 1348 of the ages (approximately 84.6% of the 
total) are less than 0.1, reflecting weak variation; the 
coefficients of variation of 246 of the ages (approximately 
15.4% of the total) are between 0.1 and 1, reflecting 
moderate variation; none of the coefficients of variation 
exceed 1. These results indicate that the three different 
versions represent a steady state in which the degree of 
dispersion among the 10Be exposure ages obtained for 
individual samples are relatively small. 
 
4.2.3 The maximum difference among the 10Be ages 
obtained using different versions of the calculator 

Recalculating the 10Be exposure ages of 1594 samples 
using versions 2.2, 2.3, and 3.0 of the calculator produces 
three different 10Be exposure ages for each sample. The 
differences between the three ages are then calculated, and 
the maximum differences among the 10Be exposure ages 
from individual samples are obtained (as shown in Fig. 

 

Fig. 4. Probability density curve of TCN 10Be exposure ages in the Tibetan Plateau. 
(a), Probability density curve of TCN 10Be exposure ages since 11.5ka; (b), Probability density curve of TCN 10Be exposure ages since 71ka; (c), Prob-
ability density curve of TCN 10Be exposure ages since 650ka.  
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6b). The results show that the maximum differences for 
990 of the samples (approximately 62% of the total) are 
less than 5 ka; the largest differences for 146 of the 
samples (approximately 9% of the total) range from 5 to 

10 ka; and the largest differences for 458 of the samples 
(approximately  29% of  the  total)  exceed  10 ka.  The 
maximum difference observed for a single sample is 181.1 
ka. 

 

Fig. 5. Box-plot of TCN 10Be exposure age from randomly selected nine study areas (after Mériaux et al., 2004; Owen et 
al., 2005; Abramowski et al., 2006; Schaefer et al., 2008; Zhou et al., 2007, 2010; Chevalier et al., 2011; Heyman et al., 
2011b; Fu et al., 2013; Wang et al., 2013).  

Fig. 6. TCN 10Be exposure ages of different samples. 
(a), Coefficient of variation of corresponding different samples; (b), Maximum exposure age of corresponding different samples.  
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5 Discussion 
 
5.1 Analysis of the results of 10Be dating on the Tibetan 
Plateau 
5.1.1  The  Last  Glacial  Maximum  on  the  Tibetan 
Plateau 

Many glacial advances occurred on the Tibetan Plateau 
during  the  last  glacial  period  (Finkel  et  al.,  2003; 
Chevalier et al., 2011; Owen and Dortch, 2014). The Last 
Glacial Maximum refers to the period during which the 
coldest  climatic  conditions  and  the  most  extensive 
glaciation occurred in the last glacial period, similar to 
Marine  Isotope  Stage  (MIS)  2.  Based  on  the  record 
obtained from the Guliya ice core, this period occurred at 
16–32 ka BP on the Tibetan Plateau (Shi Yafeng et al., 
1997). The main peak period (12–18 ka) shown in Figure 
4b  corresponds  to  a  glacial  event  during  the  LGM, 
indicating that glacial deposits produced during the LGM 
are relatively intact on the Tibetan Plateau, given the 
accumulation of chronological data at that time. The age 
of the Dali Ice Age, which represents the last glacial 
period, has been estimated to be 16 ka by ESR dating 
(Kuang  Mingsheng  and  Zhao  Weicheng,  1997)  and 
15.7±1.2–18.1±1.36 ka by TL dating (Yang et al., 2006). 
Wang Jie et al. (2007) measured the exposure ages of 
outcrops with apparent glacial striations approximately 2 
km beyond the termini of modern glaciers in the Tanggula 
Mountains using the cosmogenic nuclide 10Be; the age of a 
terminal moraine 5600 m downvalley from the terminus of 
the Longxiazailongba glacier was also determined using 
14C dating. In this study, ages of 16.1±0.3 ka BP and 
16.1±0.3  ka  BP  were  obtained,  respectively,  which 
correspond to MIS 2. Wang et al. (2006) studied TCN 
exposure ages obtained from the Shaluli Mountains, which 
lie on the southeastern margin of the Tibetan Plateau, 
using cosmogenic 10Be. The results show that the exposure 
age of the roche moutonnee of Tuershan is 15 ka, which 
corresponds  to  the  LGM.  In  addition,  the  glacial 
topography  of  the  LGM  is  preserved  in  the  major 
mountain ranges of the Tibetan Plateau (Shi Yafeng et al., 
2006, 2011). Although the main peak of the exposure ages 
(12–18 ka) corresponds to the peak of the LGM (16–32 ka 
BP), some discrepancies remain. The main peak does not 
correspond to the global LGM (which was centered on 21 
ka). Many reasons may have produced this result. First, 
the samples may have been collected from boulders that 
became exposed at the surface after the LGM, causing the 
data to represent underestimates. These samples may also 
reflect the time when the glaciers began to retreat after 
reaching their maximum, rather than the LGM. Second, as 
erosion rates are difficult to estimate, the results of 10Be 
exposure  dating,  which  typically  does  not  consider 

erosion,  all  represent  minimum  exposure  ages;  thus, 
underestimation of the exposure ages may occur, and this 
effect is more severe on older glacial landforms (Zhang 
Zhigang et al., 2014a). Furthermore, the development of 
glaciers is affected by the regional climate, and a local 
LGM likely occurred (Zhao Jingdong et al., 2011; Dortch 
et al., 2013; Owen and Dortch, 2014). Li Shijie and Shi 
Yafeng (1994) argue that regional differences exist in the 
time when glaciers advanced and reached their maxima 
during the LGM on the Tibetan Plateau. Shi Yafeng et al. 
(1997) showed that the glaciers were only 1.9–3.4 times 
larger than the modern glaciers during the LGM in the 
extremely dry and cold West Kunlun Mountains and the 
Qiangtang  region  in  the  western  Tibetan  Plateau. 
However, in the eastern part of the plateau and the eastern 
Kunlun Mountains, where the monsoon rainfall is high, 
the glaciers were 40 to 145 times larger than the modern 
glaciers during the LGM. Heyman et al. (2011b) combined 
glacial geology (remote sensing and field studies) and 
high-resolution  glacier  simulation  experiments  to 
determine the 10Be exposure ages of 67 samples in the 
Bayan Har Shan in the northeastern Tibetan Plateau. The 
results show that, during the global LGM, small or no 
glacier advances occurred in the Bayan Har Shan, which 
confirms the existence of regional differences in glacier 
advances on the Tibetan Plateau during the LGM. 

 
5.1.2  Fluctuations  of  the Holocene glaciers  on the 
Tibetan Plateau 

The Holocene is the most recent interglacial period that 
has occurred during the Quaternary glacial-interglacial 
cycles; its climate is extremely unstable, and the Holocene 
is an era of rapid climate change (Mayewski et al., 2004). 
Many scholars have used ice cores (Yao Tandong and 
Thompson, 1992; Yao Tandong et al., 1997; Shi Yafeng et 
al., 1999b), 14C dating (Li Shijie and Jiao Keqin, 1990; Yi 
et al.,  2010), TCN dating (Owen et al., 2008; Owen, 
2009b; Seong et al., 2009; Dortch et al., 2013) and other 
dating methods to identify rapid changes in Holocene 
climate on the Tibetan Plateau. This paper shows that 
more peaks occur in the Holocene, indicating that the 
glaciers on the Tibetan Plateau are sensitive to climate 
oscillations. The glacial advances of the Holocene can be 
divided into the Little Ice Age, Neoglacial and early and 
middle periods (Cui et al., 2011). The Little Ice Age refers 
to the period of cold climates that extended from the 15th 
to the 19th century, and modern glaciers in western China 
generally show 3 to 4 terminal moraines (Su Zhen and Shi 
Yafeng, 2000; Liu Shiyin et al., 2002). The age at which 
the first peak in Figure 4a appears is similar to that in the 
Little Ice Age, suggesting that glacial landforms deposited 
during the Little Ice Age are preserved on the Tibetan 
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Plateau. Of these, three moraines preserved around the 
margins  of  the  Urumqi  River  Glacier  No.  1  on  the 
northern slope of the Karawu Mountains in the northern 
part of the Tianshan Mountains are well preserved, and 
their lichen ages are 1538±20 a, 1777±20 a and 1871±20 
a, respectively (Chen, 1989). The second peak shown in 
Figure 4a corresponds to the 8.2 ka and 9.3 ka events, 
indicating that the glacier advance in the Early Holocene 
was  related  to  these  cooling  events.  Decreases  in 
temperature may be the main driving force for Holocene 
glaciations, and it seems reasonable to conclude that the 
glacier advances in the Holocene were driven by changes 
in temperature. Seong et al. (2009) used TCN dating to 
measure  the  ages  of  the  millennial-scale  glacier 
fluctuations  since the LGM in  the Kongur Shan and 
Muztag Ata in the extreme continental glacier region and 
compared the age results with climatic curves. The results 
show that, since the LGM, the glaciers in the western 
Tibetan  Plateau  have  mainly  responded  to  climate 
fluctuations  (rapid  cooling  events)  in  the  Northern 
Hemisphere but have been less affected by the South 
Asian monsoon. Thompson et al. (1997) and Yao Tandong 
et al. (1997) applied studies of ice cores obtained from the 
Tibetan Plateau to support the hypothesis that climate 
changes  in  this  area  are  associated  with  mid-latitude 
westerlies  and  Atlantic  climate  changes,  and  multiple 
rapid  (millennial-centennial)  climate  fluctuations  have 
occurred. Even in the extreme continental glacier region 
(where  the  glaciers  are  relatively  sensitive  to 
precipitation), glacial advances are also mainly driven by 
changes in temperature. Sati et al. (2014) used OSL dating 
techniques to conduct chronological studies of the Dinagli 
Valley in the western Himalayas. The results show that, 
since  12  ka,  the  region  has  experienced  three  major 
glaciations at 1 ka, 7.5–4.5 ka and 12–9 ka. In addition, 
the  area  also  exhibits  evidence  of  glacier  advances 
corresponding to the Little Ice Age, and it is also believed 
that the combined effects of temperature and precipitation 
lead to glacial fluctuations in the area, but decreases in 
temperature are the main driving factor.  In summary, 
combining existing research results and the peaks in the 
probability density curve generated from the recalculated 
1848 10Be ages on the Tibetan Plateau that correspond to 
the 8.2 ka and 9.3 ka cold events suggests that reductions 
in temperature may have been the main driving force of 
glaciation during the Holocene. Finally, it is particularly 
noted that the use of probability density curves to extract 
the true timings of ice ages requires further testing, and 
Figure 4 does not account for the characteristics of the 
different regions on the Tibetan Plateau, specifically the 
heterogeneities caused by local climate conditions and 
topography. Despite these caveats, the large amounts of 

data examined in this study have some significance in 
revealing the overall trends. 

 
5.2 Analysis of the reasons for the differences in the 
10Be exposure ages produced by different versions of 
the calculator 

Although the 10Be exposure ages produced by the three 
different versions of the calculator are relatively tightly 
clustered, the application of these different versions to 
individual samples produces large differences in the 10Be 
exposure ages. Four hundred and fifty-eight of the 1594 
samples (approximately 29% of the total) show maximum 
differences  greater  than  10  ka,  and  the  maximum 
difference observed for a single sample is 181.1 ka, which 
has a significant impact on determining the exposure ages 
of glacial deposits. The reasons for the discrepancy stem 
from the constant updates to the CRONUS-Earth online 
calculator;  version  2.2  included  incorrect  default 
calibration data and inaccurate scaling schemes, as well as 
erroneous muon interaction cross sections (Marrero et al., 
2016). Version 2.3 is more accurate than the previous 
versions of the CRONUS-Earth calculator. It updates the 
cross-section  data  for  muon  interactions  with  data 
obtained from Borchers et al. (2016), who performed a 
calibration using data from the Beacon Heights bedrock 
core. The use of these data may have a significant impact 
on areas with relatively high erosion rates (Heisinger et 
al., 2002). Version 2.3 of the calculator also uses the new 
10Be and 26Al default reference production rates, corrects 
the Be and Al measurement standards used in version 2.2, 
and addresses other errors (Marrero et al., 2016), all of 
which provide additional corrections to the TCN ages. 
Version 3.0 is maintains acceptable accuracy while rapidly 
calculating exposure ages. Because the version 3.0 release 
only became available in March 2017, its accuracy and 
reliability have not been extensively tested (Balco, 2017). 
In addition to the different versions discussed in this 
article, which produce 10Be ages that differ by as much as 
181.1  ka,  Owen  et  al.(2008)  showed  that  different 
production rate models can also result in 30% or even 40% 
differences in ages. Regardless of the model or production 
rates used, geomorphological uncertainties and the use of 
different metrics of landform age have more significant 
effects on the estimated ages of glacial landforms (Owen 
and Dortch,  2014).  On the one hand,  geological  and 
topographic factors are the largest sources of uncertainty 
in the 10Be exposure dating method (Briner et al., 2005; 
Owen et al., 2008; Heyman et al., 2011a; Dortch et al., 
2013; Murari et al., 2014). Pre-depositional exposure can 
lead to the overestimation of ages, whereas other factors 
(the  instability  of  boulders  on  moraines,  erosion, 
weathering,  subsequent  exhumation,  snow  cover  or 
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sediment cover) can lead to the underestimation of such 
ages. On the other hand, many scholars believe that the 
methods used to calculate the ages of landforms from 
exposure  ages  affect  the  inferred  ages  of  glacial 
landforms. Examples include the mean standard weighted 
deviation  (MSWD)  method,  which  simplifies  the 
identification of outlier exposure ages (Finkel et al., 2003; 
Hedrick et al., 2011). Dortch et al. (2013) combined the 
Gaussian  distribution  with  the  cumulative  probability 
density function to obtain the best fit to TCN exposure 
ages in the western semiarid region of the Tibetan Plateau 
and used the result to partition the local ice age. Student's t
-test has also been used to analyze TCN chronological 
data  in  nearby  areas  (Owen  and  Dortch,  2014).  In 
conclusion, in addition to the limitations on the results of 
TCN dating imposed by basic physical principles and 
geological  uncertainty,  researchers  choose  different 
methods of statistical analysis and different versions of the 
online calculator,  and other  factors  can also  have an 
impact. The continuous updates to the CRONUS-Earth 
online  calculator  lead  to  differences  among  the  10Be 
exposure ages produced by the three different versions of 
the calculator, and the factors that were changed during 
these updates are numerous and complex. 
 
6 Conclusions 
  

This paper recalculates 10Be ages obtained from the 
Tibetan Plateau published during 1999–2017 using three 
different versions of the CRONUS-Earth online calculator 
and combines them with existing research results. The 
following conclusions can be drawn from this work. 

(1) Boulder dating samples make up for 97% of the 
dataset, and approximately 97% of the exposure ages are 
less than 200 ka. (2) The probability density curve of the 
exposure  ages  suggests  that  greater  numbers  of 
oscillations emerge during the Holocene, and the peaks 
correspond to the Little Ice Age and the 8.2 ka and 9.3 ka 
cold  events.  We  infer  that  several  glacier  advances 
occurred on the Tibetan Plateau during the Holocene, and 
the occurrence of these multiple events is closely related 
to  the  rapid  climate  change  events  in  the  Holocene. 
Cooling is probably the main driving factor of Holocene 
glaciation. In addition, the main peak corresponds to 12–
18 ka, which may correspond to the height of the Last 
Glacial Maximum, but there is a discrepancy, and no 
major peak can be identified that corresponds to the global 
Last Glacial Maximum, which was centered on 21 ka. (3) 
For most regions, the newer versions of the CRONUS-
Earth calculator produce older 10Be ages for the same 
samples. Given the different versions of the CRONUS-
Earth  online  calculator,  the  maximum differences  for 

approximately 29% of the 10Be ages exceed 10 ka, and the 
largest difference for an individual sample is 181.1 ka. 

Although the TCN dating technique is one of the most 
successful  dating  techniques  used  in  the  study  of 
Quaternary  glacial  history,  the  accuracy  of  these 
determinations is restricted by many factors. Therefore, 
improving the accuracy of the TCN dating technique for 
application  to  Quaternary  glacial  landforms  and 
establishing more accurate geochronological frameworks 
still requires further work by additional researchers. 
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