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Abstract. This study explores the relationship between streamflow time variability and 

precipitation and air temperature variability, in the upper reaches of the Ürümqi River in 

northwestern China. Wavelet analyses are adopted to analyse the multi-time scale features of 

monthly temperatures, monthly precipitations and monthly runoffs during the years between 

1958 and 2006. Results of continuous wavelet transform imply a statistically significant cycle 

over an approximately 12-month period in the temporal fluctuations of monthly air temperature, 

precipitation and runoff. Furthermore, monthly temperature shows 66-month and 96-month 

cycles while monthly precipitation shows 6-month, 30-month and 72-month cycles. Monthly 

runoff has 6-month, 24-month, 36-month and 72-month cycles. The results of cross wavelet 

transform and wavelet coherence show that monthly runoff variability correlates with 

precipitation and air temperature fluctuations at 6-month and 12-month respectively. Other 

time-scale correlations at 1-year, 2-year, 3-year and 6-year marks are also highlighted between 

the different time series. These correlations are then explained considering the alpine 

characteristics of the catchment. Higher air temperatures in the upper reaches of the Ürümqi 

River accelerate snow melt and intensify evaporation, thus the relationship between air 

temperature and runoff is uncertain during different seasons. Overall, summer air temperature 

controls the annual runoff and precipitation provides a sustained water supply to the upper 

Ürümqi River. They constitute the dominant factors that explain the temporal variations of 

streamflow in the upper Ürümqi River. Univariate and cross-wavelet analyses on runoff and 

climate variability clearly offer a useful tool in hydro-meteorological issues in alpine areas. 

1. Introduction 
Runoff is strongly affected by climate change and underlying surface situation [1-4]. The climate 

change directly influences the volume, temporal and spatial distribution of runoff [5]. The climate 

factors, such as precipitation, air temperature and evaporation, have a significant influence on the 

generation of runoff [6-11]. It is noted in the Synthesis Report of IPCC [12] that global climate 

warming has led to temporal and spatial redistribution of regional water resources in the last century. 

This is particularly true for glacial streams as the surface runoff volume decreases with the change in 

generation situation caused by climate warming [9,13]. More specifically, changes in air temperature 

strongly modulate snow accumulation and melt, thus affecting the hydrological systems which 

http://creativecommons.org/licenses/by/3.0
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originate in the alpine regions [14-17]. A number of studies relate meteorological factors to the 

streamflow in alpine catchments [4,7,15,16,18,19].  

Many studies have been conducted to capture the interactions between runoff, air temperature and 

precipitation in alpine catchments [9,14-16,17, 20-22]. Yet the correlation between the meteorological 

factors and runoff of the Ürümqi River has rarely been discussed. This is an issue which will affect the 

evaluation of regional water resources and regional sustainable development in Ürümqi city. The 

Ürümqi River is located in the arid and semi-arid areas in northwestern China. The runoff is very 

sensitive to climate changes in the upstream of Ürümqi River, i.e., minor climate change, tend to result 

in significant fluctuations in the runoff. Due to global warming, the warm and dry climate in the inland 

mountain areas in northwestern China has gradually transformed into a warm and humid climate 

[21,23]. The changing precipitation as well as air temperature would affect the runoff of the Ürümqi 

River. Furthermore, the Ürümqi River which is located in Tianshan Mountain is a large source of 

water for Ürümqi City [23]. The city houses 3.5 million people [24] and any changes in runoff would 

have an enormous impact on the daily lives of the local residents. The hydrology process in this 

catchment as well as its response to climate change has attracted more attention in recent decades, 

especially the correlation between climate variability and runoff in the upper Ürümqi River. 

The interaction between the precipitation or air temperature and runoff in alpine areas is complex. 

Firstly, the process is highly dependent on topographical features and latitude [15]. Warmer air 

temperatures at higher elevations may have no impact on snowpack, whereas they would result in 

earlier melt when they are closer to the snow line [19,25]. Secondly, annual runoff is dominated by 

mean air temperatures in summer in highly glacierized alpine river basins [15,17]. Thirdly, the 

physical mechanisms of precipitation-runoff and air temperature-runoff in different alpine regions are 

different [26]. Over the last decades, air temperature and evaporation have increased with glaciers 

retreating and permafrost receding in the mid to high latitudes in the northern hemisphere [25].  

Wavelet analysis is able to quickly and effectively reflect the features of runoff, air temperature and 

precipitation regimes as well as their interrelationships [21,27-32]. A number of the latest studies have 

looked into the correlation between air temperature, precipitation and runoff, and conducted case 

studies in drainage basins by using wavelet analysis. Examples include [33] Tarim’s headwater basin, 

[24] the alpine meadow belt of the Tianshan Mountain, [21] Aksu River, [34] Quebec and Ontario of 

Canada, [35] Aegean region of Turkey, [36] Guyana Shield, [32] upper reaches of Danube River, [37] 

source regions of Yangtze River, [38] Yarkand River. All these studies indicated that wavelet 

transform is an effective method to analyze the spatial and temporal non-linear relationship of runoff 

to climate factors in time series. 

This study contributes to this cause by investigating the quantitative impact of air temperature and 

precipitation on the streamflow in mountain drainage basins along the Ürümqi River of Tianshan 

Mountains, China. Simultaneously, we try to understand the low-frequency fluctuations and their 

interactions, so as to explore the statistical characteristics of runoff, precipitation and temperature 

changes over time. Do these time series show long-term correlation? How does the data fluctuate in 

terms of scale and time? What is the relation between the cycle in discharge and those in precipitation 

and temperature? 

2. Field site and data 

2.1. Field site 

The upper basin of the Ürümqi River is located on the northern slope of the Tianshan Mountains and 

along the southern edge of the Junggar Basin in Xinjiang, northwestern China [23,39,40]. Basin 

latitude extends from 43°00' N to 43°28' N and longitude extends from 86°45' to 87°18' E (figure 1). 

The Ürümqi River originates from Glacier No.1, the northern wing of the Tianger Peak II (4479 m 

ASL) in the middle of the Tianshan Mountains [13,41], which has an average sea level of 3,900 meters 

(ASL). The Ürümqi River is a typical intermountain river that is supplemented by glacial meltwater 

and precipitation [10,25]. Streamflow in this basin is supplied by snowmelt and perennial glacier 
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melting in spring, apart from rainfall and snowmelt in summer [13,22]. The flood peak season is July 

and August, mainly from rainfall. Rising air temperature and intensive evapotranspiration has affected 

the runoff dramatically in the upstream of Ürümqi River [42]. 

 

 

Figure 1. The position of hydro-meteorological observation sites and 

digital elevation map (DEM) of the upstream of the Ürümqi River, 

Tianshan Mountains, China. 

 

The area is endowed with a complex topography of grasslands, marshes and deserts located next to 

the surrounding alpine mountains [43]. Data on this basin is limited. In 1958, the Yingxiongqiao 

Hydrological Gauging Station (YHGS) (figure 1) was set up in the upstream of the Ürümqi River. It is 

the sole hydrological gauging station with a prolonged series of available data located in the mountain 

pass. The river above YHGS is about 62.6 km long, covering 924 km
2
 drainage area at an average 

altitude of 3483 m ASL (figure 1). The study area (ie above YHGS) falls into three climate zones: 1) 

Mountain snow area (i.e, modern glacier area) with an average snow line height of 4050 m ASL, 

annual average temperature of -6°C and 75% of annual precipitation is in the form of snow, 2) The 

sub-alpine tundra with an annual average temperature of -1.86°C and snowfall makes up 50% of the 

annual precipitation, 3) High-cold and low-temperature areas with an annual average temperature of 
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2°C and snowfall makes up 25% of annual precipitation [10]. 

In the upper reaches of the Ürümqi River, the precipitation concentrates in June to August. Annual 

Mean Precipitation at Daxigou Meteorological Station (DMS) is 454 mm (from 1958 to 2006) (figure 

1), which has been in operation since 1958. The observed annual maximum precipitation is 632 mm 

(in 1996) in the upstream area. The average annual air temperature changes from -5.2°C to 0°C in the 

upstream region. The observed upstream average annual runoff is 7.71 m
3
/sin YHGS. It should be 

stated that sparse population and hence the human impact (i.e., water resources development) on the 

upstream of the Ürümqi River was trivial in the overland hydrological process before 2006. To 

investigate the effect of climate change on the streamflow, the upstream was selected as a target study 

area.  

2.2. Data 

 

 

Figure 2. Time series (bottom) and continuous wavelet power spectrum (top) of the monthly average 

air temperature from 1959-2006. 

 

Figure 3. Time series (bottom) and continuous wavelet power spectrum (top) of the monthly 

precipitation from 1959-2006.  
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Several hydrologic and meteorological datasets for time period of 1958-2006 are used in the study. 

Monthly average runoff was obtained from YHGS spans for the period from January 1958 to 

December 2006. Monthly average temperature and precipitation are obtained from DMS for the 

periods from January 1959 to December 2006 and January 1958 to December 2006 respectively. It 

should be particularly noted that the Daxigou Reservoir, located 5 km above YHGS, was established 

in 2007. Its establishment disturbed the natural hydrological conditions of the upstream Ürümqi River, 

thus YHGS data after 2006 have been omitted from this study. Time series data are shown in figures 

2-4. 

 

 

Figure 4. Time series (bottom) and continuous wavelet power spectrum (top) of the monthly average 

runoff from 1959-2006.  

3. Methods 

Wavelet analysis is an effective tool to study the multi-time scale characteristics of hydrological 

factors [27,30,44]. It can exhibit the periodicities of signals at different time scales. The complex 

Morlet wavelet (with ω0=6) in the continuous wavelet transform provides a fine balance between time 

and frequency localization and its Fourier period is almost equal to the scale (λ= 1.03a). Cross wavelet 

transform and wavelet coherence based on wavelet transform are used to reveal relationships between 

two signals in time frequency space. 

In this study, the Matlab package of cross wavelet and wavelet coherence provided by [28] is used 

for the calculation and it is available from the URL http://www.pol.ac.uk/home/research/waveletcoher 

ence/. 

3.1. Morlet continuous wavelet transform 

The continuous wavelet transform is meant to achieve a complete time-scale representation of 

localized and transient phenomena at different time scales. Coefficients of the wavelet transform of a 

continuous-time signal  x t  are defined by the linear integral operator 

     *

,, dx aC a x t t t



     with  ,

1
a

t
t

aa

 
  

 



   (1) 

where *  represents the complex conjugate. The wavelet function  t  can be either real or 

complex. The parameter a can be regarded as a dilation ( 1a  ) or contraction ( 1a  ) factor of the 

wavelet function  t , in agreement with different scales of observation. The parameter   can be 
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expressed as a temporal or function translation  t , which makes the study of the signal  x t

possible locally around the time  . In this study, we have selected the complex Morlet wavelet 

 t  which is defined as follows: 

 
2

01/4 /2iw t tt e e    (2) 

where 𝑤0 denotes frequency. The wavelet power spectrum  ,XW a   of a continuous-time signal 

 x t  is defined as the modulus of its wavelet coefficients: 

       
2*, , , ,X X X XW a C a C a C a      (3) 

The wavelet transformation at a point in time always contains information of neighboring data 

points. If the center of the wavelet is close to the start or the end of the signal, edge effects will occur. 

The cone of influence (COI) is the region of the wavelet spectrum where edge effects become 

important and is defined here as the e-folding time for the auto-correlation of wavelet power at each 

scale. For the complex Morlet wavelet, the e-folding time is 2a . This e-folding time is chosen so 

that the wavelet power for a discontinuity at the edge decreases by a factor of e-2 and ensures that the 

edge effect is negligible beyond the point [45]. Therefore, the Morlet wavelet is often selected by 

researchers for analysis on geophysical time series [27,28,30,32,44]. In addition, the wavelet transform 

variance is completed to find the significant periods. The peak variance corresponds to significant 

periods of the signal.  

3.2. Cross wavelet transform and wavelet coherence 

Cross wavelet transform (XWT) and wavelet coherence (WTC) are adopted to illustrate the 

relationships between runoff and meteorological factors [46]. The wavelet cross-spectrum  ,XYW a   

between the two signals  x t  and  y t  is defined as: 

     *, , ,XY X YW a C a C a    (4) 

where  ,XC a   and  * ,YC a   represent the wavelet coefficient of the continuous-time signal 

 x t  and the complex conjugate of the wavelet coefficient of  y t  respectively. The wavelet 

cross-spectrum  ,XYW a   is intended to measure the cross-covariance of the signals x  and y . It 

is worth noting that the cross wavelet transform can reveal the common power and relative phase in 

the time-frequency space, while the WTC can find significant coherence even when the normal power 

is low [18,47]. 

Generally speaking, the notion of coherence in signal processing consists of a measure of the 

correlation between two signals or between two representations of these signals. WTC measures the 

cross-correlation between two signals as a function of frequency [45]. This highlights the temporal 

variation in the correlation between the two signals and allows detection of high-transient covariance. 

The wavelet coherence of two signals is defined as the absolute value squared of the smoothed wavelet 

cross-spectrum, as normalized by the smoothed wavelet power spectra: 
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 (5) 

where 


 indicates smoothing both in time and scale, as discussed by Torrence and Webster [48] 
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and Labat et al [47]. The wavelet coherence 
 ,WC a 

 takes a value between 0 and 1, and is an 

accurate representation of the (normalized) covariance between the two signals [45]. 

When the wavelet function is the complex Morlet wavelet, the corresponding wavelet 

cross-spectrum  ,XYW a   is complex as well. The angle tan-1 [imaginary part of  ,XYW a  / real 

part of  ,XYW a  ] is defined as the wavelet coherence phase. A consistent phase relationship in 

regions with large common power suggests physical causality between two signals.  

The statistical significance level of the wavelet coherence is estimated by using Monte Carlo 

methods and is discussed in detail in [28,45,49]. 

Two statistical limits are taken into account to restrict our analysis to statistically significant-only 

fluctuations: 1) Only periodicity is different from red noise [45] within 95% confidence intervals are 

considered; 2) Because the edge effect produces COI, if T is the total length of the series, periods less 

than / 2 2T  will be considered as significant. However, if previous studies have shown oscillations 

with periods from / 2 2T to / 2T  (Nyquist frequency), these oscillations will be included. 

4. Results and discussion 

4.1. Multiple time scale analysis by wavelet spectra 

Changes of runoff in upstream of the Ürümqi River are mainly caused by local climate changes. Air 

temperature and precipitation datasets are used as climate factors. Firstly, Morlet continuous wavelet 

transform was performed on climate factors and the runoff to find their significant periodicities. 

4.1.1. Wavelet analysis on monthly air temperature. Monthly average air temperature variations from 

1959 to 2006 are depicted in figure 2 (bottom). It fluctuates steadily in the range from -19.7°C to 

7.4°C. Annual average air temperature is -5.1°C and shows a significant upward trend in the past 50 

years with an approximate growth rate of 0.2°C per decade. In 1972, 1984, 1985 and 1996, air 

temperatures were notedly below the average, while air temperatures in 1986 and 2002 were notedly 

above average.  

 

 

Figure 5. Plot of wavelet variance for the monthly average air temperature, 

monthly precipitation and monthly average runoff. 

 

Figure 2 (top) shows the wavelet power spectrum of monthly average air temperatures. The dashed 

black line designates the cone of influence. At the 95% significance level, several long periods were 

detected for the air temperature time series. Air temperature fluctuates significantly at the 12-month 

cycle over the period of 1959-2006. This cycle can be observed in the wavelet spectrum almost 
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throughout the entire analytical cycle, and the cycle has always been significant. In addition, four 

shorter cycles were detected (96, 66, 24 and 48 months). In view of the wavelet power spectra, these 

low-level cycles are significant only for a short period of time, such as the 96-month scale between the 

years 1969–1992, 66-month scale between the years 1987–1997, 48-month scale between the years 

1998–2002, and 24-month scale between the years 1977–1992. The time series show that these shorter 

cycles have significant time characteristics. These cycles are also visible in the wavelet variance 

(figure 5), although they change from time to time. This time period conforms to the year and the daily 

minimum temperature is usually lower than the long-term average. This means that long cycles have 

existed for many years, especially during cold winters. 

4.1.2. Wavelet analysis on monthly average precipitation. Precipitation is one of the main factors 

affecting the runoff in upstream of the Ürümqi River. Figure 3 (bottom) presents the monthly 

precipitation time series. It fluctuates between 0-284 mm and is unevenly distributed with 60 percent 

of the annual precipitation in summer. Inter-annual fluctuations of precipitation are visible, with the 

minimum annual precipitation at less than 300 mm in 1985 and the maximum at 632 mm in 1996. On 

the whole, precipitation has a significant increasing trend since the mid-1980s. 

In general, the wavelet spectra show a varied behavior of the monthly precipitation time series used 

to calculate the catchment precipitation series, which depends on the geographic position of climatic 

stations. However, the wavelet power spectrum is still very effective for the analysis of precipitation 

time series for specific climatic stations [32]. Figure 3 (top) depicts the wavelet power spectrum of 

monthly precipitation. Monthly precipitation fluctuates significantly at the narrow 12-month scale 

band over the observed time period, indicating that there is a significant characteristic of inter-annual 

variability of monthly precipitation. Precipitation also fluctuated at three different low-level periods, 

namely 6-month, 30-month and 72-month. The 6-month scale between the years 1960-2005 was 

mainly for precipitation with the largest impact. The 30-month scale was found over the periods of 

1967-1972, 1978-1982 and 1989-2003 intermittently. Precipitation also fluctuated at a relatively long 

periodicity of 72-month over the period of 1966-1999. 

4.1.3. Wavelet analysis on monthly average runoff. Figure 4 illustrates the monthly average runoff and 

its wavelet power spectrum. Runoff occurs mainly in summer because the runoff from June to August 

accounts for over 70 percent of the annual runoff, where floods seldom occur in spring. Therefore, the 

monthly average runoff has an uneven distribution. Average monthly runoff in July from 1959 to 2006 

was 26.3 m
3
/s, while that of February was 1.1 m

3
/s. Moreover, the inter-annual change of runoff has a 

large fluctuation, e.g., monthly average runoff in July varies from 13.5 to 55.2 m
3
/s, as shown in figure 

4 (bottom). In general, between the 1950s and late 20th century, runoff showed a noted upward trend. 

However, runoff appears to decrease since the beginning of this century. 

The monthly mean runoff shows that about 12 months of periodicity can be observed in the wavelet 

power spectrum almost during the entire analysis process, as shown in figure 4 (top). Meanwhile, 

runoff also fluctuates at 6-, 24-, 36-, 72- and 144-month scales cycles. Runoff fluctuation at the 

6-month scale is shown with different characteristics for almost the entire duration of the analyzed 

period, because the runoff is influenced by seasonal variations of climatic factors at this scale. 

Different characteristics in different time domains have been found in the 24-month scale between the 

years 1992-2004. It was consistent with the transition to a warmer and more humid climate in the 

region during the same period. The 36-month and 72-month scales are detected for almost the entire 

analyzed duration as well. However, in almost all cases, the wavelet power spectral coefficients are 

approaching 0. This indicates that these two cycles are not significant. The 144-month variability is 

found in very limited time zones because of the short analysis period.  

4.1.4. Wavelet variance. When comparing wavelet variance in monthly temperature, precipitation and 

runoff in time series, we found that the most significant period is the 12-month scale (figure 5). The 

6-month and 72-month cycles of monthly average runoff approximately duplicate the monthly 
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precipitation, rather than the monthly average air temperature, which implies that the runoff in 

upstream of the Ürümqi River is mainly affected by precipitation at the 6-month and 72-month scales. 

For the other scale cycles, the significance detected by wavelet variance is consistent with that 

illustrated by wavelet transform.  

4.2. Cross wavelet analysis between climate factors and runoff 

In order to analyze the correlation between air temperature and runoff, precipitation and runoff in 

time-frequency domains, cross wavelet transform and wavelet coherence are calculated between them 

[50]. The significant tests against red noise are also calculated in cross wavelet transform and wavelet 

coherence. 

4.2.1. Cross wavelet between air temperature and runoff. When comparing the cross wavelet 

transform with squared wavelet coherence between monthly air temperature and monthly average 

runoff time series, it can be observed that the air temperature and runoff correlate closely at 

approximately 12-month scale cycle between the years 1960-2005 (figure 6). Moreover, runoff also 

responds to the variability of air temperature at scales of 6-, 24-, 34-, 36-, 48- and 72-month. The 

6-month cycle occurred over 1960-2005. The 24-month scale was found during 1994-2000. The 

34-month scale was observed during 1976-1984. The 36-month scale was detected during 1964-1971. 

The 48-month was distributed over the period 1996-2002 and the 72-month was found over 1972-1996 

(figure 6(a)). This is consistent with the findings of other authors, who analyzed the Tianshan runoff 

and found the 1-, 2-, 4-and 8- year cycles of the Aksu River [21] as well as the 2-, 4- and 8- year 

cycles on the Yarkand River [38]. Compared to the cross-wavelet transform, the wavelet coherence 

(figure 6(b)) has a stronger common power in the time-frequency space. The high power is always 

available in the time series of 12-month period during most of the observation time span. In this period, 

air temperature leads runoff by around 0°. However, in the low-frequency area, we can observe a 

change in the behavior for most of the observation period. In the low-frequency area, where the four 

cycles are observed, they are all high in power as well. The four cycles are the 24-month between the 

years 1977-1984 and the years 1993-2000, 36-month between the years 1981-1985, 48-month between 

the years 1995-2002, and 72-month between the years 1972-1996 respectively. It shows that the air 

temperature lead time prolongs with increasing runoff periodicity. 

From the phase difference in cross wavelet transform and wavelet coherence, the contributions of 

air temperature to the runoff can be inferred (figure 6). In the high-frequency area, phase difference at 

the 12-month is almost 0°, i.e., increasing air temperature tends to enhance glacier-melting within the 

catchment which replenishes the river efficiently. Yet, the phase difference at 6-month is very unstable, 

i.e., increasing air temperature may increase or decrease the runoff at this scale [51]. The Ürümqi 

River is located in alpine inland areas where air temperature is very low and most precipitation is solid, 

so the time in which precipitation makes an efficient supply for rivers is different in different seasons 

[52]. On one hand, the river can be replenished by melting glaciers accelerated by rising air 

temperature. On the other hand, rising air temperature enhances the evapotranspiration, resulting in 

fewer melting glaciers which can replenish the river [53]. In the low-frequency region, phase 

difference varies from 120° to 150°, which means a lead time of 4 to 5 years or so. It can be observed 

that the phase difference is also growing with increasing cycle. It illustrates that continuous rising air 

temperature inevitably results in exacerbated glacier melting and weakens its ability to replenish the 

river. As time goes by, the impact will become more significant. 
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Figure 6. Cross wavelet transform (a) and squared wavelet coherence (b) between the monthly 

average air temperature and monthly average runoff.  

4.2.2. Cross wavelet between precipitation and runoff. Cross wavelet between monthly precipitation 

and runoff is depicted in figure 7. It can be observed that for most observation time windows, the 

significant area of the cross-wavelet spectrum of precipitation and runoff is approximately in the 

12-month cycle region. There is a discontinuous significant area of the cross-wavelet spectrum at the 

6-month scale for precipitation and runoff. The change of cross-wavelet spectrum at the 6-month scale 

is relatively stable in the time series before the 1990s. However, we can observe some oscillation in 

the behavior for cross-wavelet spectrum until the end of the observation period. In the low-frequency 

area, the significant area of the cross-wavelet spectrum cannot be seen. This means that runoff is 

affected by the precipitation over several months, yet its influence is very limited for more than one 

year. This is in line with the watershed characteristics of large gradient in the upper Ürümqi River. 

Figure 7(b) shows wavelet coherence of monthly precipitation and runoff. In half of the spectral 

region, the wavelet coherence is close to 1. The significant coherence area observed in the actual 

precipitation/runoff time series spectrum can be seen from the cycle scale of 4 months to 16 months in 
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the first half of the month until the 1990s, and between 4-month and 32-month after 1990s. This time 

period agrees with years, when annual precipitation was generally higher than the long-term average. 

This means that the increase of precipitation was a greater influence factor for runoff. Moreover, a 

72-month scale cycle was observed between the years 1965-1996. It means that precipitation is the 

primary factor to influence the runoff continuously on a larger time scale. 

The phase difference is shown in cross wavelet transform and wavelet coherence between 

precipitation and runoff (figure 7). Similar to the spectra of the observed precipitation/ runoff time 

series, the phase arrows show that precipitation leads discharge for shorter periodicities. In the 

significantly correlated areas, almost all the phase difference equals to 0° or approximately 0°. Once 

again, this shows significant coherence of precipitation–runoff or most of the periods at almost the 

entire time as expected. This is consistent with the high degree of agreement between the decadal 

variability of precipitation and flow in the upper reaches of the Ürümqi River as found in [10]. 

Moreover, the Ürümqi River upstream has geomorphologic features such as high altitudes and steep 

slopes. The evaporation is small as a result of the low air temperature. Therefore, most precipitation 

tends to create an efficient supply for the Ürümqi River.  

 

 

Figure 7. Cross wavelet transform (a) and squared wavelet coherence (b) between the monthly 

precipitation and monthly average runoff.  
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The main differences between temperature discharges and precipitation discharges can be observed 

in the cross wavelet transform and wavelet coherence. The precipitation time series show a high 

degree of consistency in most frequencies and times. On the other hand, the coherence between air 

temperature and runoff is less significant at most frequencies, except for the high-frequency range. In 

the temporal periods when the wavelet coherence and the cross-wavelet spectra are closely related to 

the red noise background, the precipitation and runoff are in positive phase in all cycles, yet the 

temperature and runoff are in positive phase only at the 12-month scale cycle, while increasing period 

temperature leads discharge by about 180°. In other regions the phases are shifted at random. 

5. Summary and conclusion 

The main objective of this article was to conduct an initial analysis on the prolonged behavior of 

monthly average runoff, air temperature and precipitation time series in the Ürümqi River upstream, as 

well as to emphasize the long-term cycle and the dependencies of precipitation, temperature and 

runoff on each other. This large watershed is of the highest importance as water management in this 

part of China is subject to recent transformations in terms of hydroclimatology and anthropogenic 

impact. 

The wavelet spectra of each observation time series are analyzed. High correlation between the 

various time series is a major reason for the high level of resemblance between the spectra of each 

variable. Statistical tests of the wavelet spectra confirmed a 12-month scale cycle in all of the three 

observed timeseries on a 95% significance level. The 12-month cycle is most obvious in the oscillation 

of air temperature and is more obvious in runoff than in precipitation. In addition, precipitation and 

runoff have a common significant cycle of 6-month. Furthermore, other cycles of air temperature, 

precipitation and runoff revealed by continuous wavelet transform are verified by the wavelet 

variance.  

Relations between air temperature, precipitation and runoff time series are studied using the 

cross-wavelet spectra and wavelet coherence. Both air temperature and precipitation correlates with 

runoff mainly at the 6-month and 12-month scale bands. The impact of seasonal climate variations on 

runoff is revealed. Additionally, air temperature and precipitation affect runoff differently, as implied 

by phase relationship. Runoff is positively correlated with air temperature at the 12-month scale band. 

At the 6-month scale, the correlation between runoff and air temperature is unstable because phase 

angle at this scale shifts from the positive to the negative or vice versa with time. The result is due to 

the double effects of rising air temperature. On one hand, rising air temperature tends to accelerate 

glacier melting and hence enhances the replenishment to the river. On the other hand, rising air 

temperature causes an excess of evapotranspiration and thus results in less supply for the river. 

Moreover, runoff is negatively or almost negatively related to air temperature at 24-, 34-, 48- and 

72-month scale bands. However, runoff is positively correlated with precipitation at all detected scales. 

In addition, one particularly interesting finding is the lead time between precipitation and runoff found 

in cross-wavelet spectra. 12-month and 72-month scale cycles are significant and this means that 

precipitation leads runoff by about 6 months and 72 months. Soil moisture storage and near-surface 

groundwater have a typical residence time at this order of magnitude. This shows that when long-term 

decadal fluctuations occur in precipitation and runoff, deeper groundwater reserves are available, 

while this does not happen for short-term fluctuations. This can be clearly shown in figure 7, where a 

constant time delay has been applied to generate the discharge in all cycles, so that the lead time does 

not increase with the cycle. Furthermore, from the 1990s, fluctuations of cycle scales tend to intensify 

at 6-month. This may also be relevant to the effects of water storage into shallow aquifers due to 

changes in water balance. The precipitation–runoff wavelet coherence spectrum show significant 

coherence for most of the periods at almost the entire time series as would be expected, where the 

significant coherence of the air temperature-runoff is only between the months 8-16. Although long 

periods could not be detected in the temperature time series, all of these showed a long-term 

persistence. Hence, the long-range dependence may be caused by some other non-cyclical mechanism 

or process. 
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