新疆夏季云下二次蒸发对雨滴稳定同位素影响的定量研究

潘素敏1, 张明军1, 王圣杰1,2

(1 西北师范大学地理与环境科学学院,甘肃 兰州 730070;

2 中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室,甘肃 兰州 730000)

摘要:在干旱区,雨滴在云下降落易受到二次蒸发的影响,明确降水从云层底部降落到地面过程 中稳定氢氧同位素的变化在同位素水文学研究中很有必要。基于新疆地面气象站逐小时的观测 资料,采用改进后的Stewart模型,研究了新疆雨滴云下蒸发剩余比(从云下到近地面雨滴蒸发后剩 余体积占原体积的百分率 f)、雨滴中 δ D变化量($\Delta\delta$ D)和过量氘变化量(Δd)的时空特征,并分 析了 Δd 与气象要素的关系。结果表明:(1)新疆降水中 Δd 和蒸发剩余比存在明显的空间差异。 (2)当在气温低、相对湿度大、降水强度大、雨滴直径大的情况下,蒸发剩余比较大, Δd 接近于0,蒸 发剩余比与 Δd 间的线性关系明显,斜率较低。不同气象条件下,蒸发剩余比与 Δd 的关系并不固 定,利用这一线性关系反推蒸发剩余比应慎重。(3)敏感性分析可以得出,如果各气象站的气温升 高2°C, Δd 降幅为0.26%~3.10%;如果相对湿度升高5%, Δd 升幅为1.23%~8.34%;如果雨强增 大10%, Δd 升幅为0.06%~0.89%;如果雨滴直径增加0.2 mm, Δd 升幅为0.98%~8.16%,但雨滴 直径增加量大于1.2 mm时, Δd 变化量趋于稳定。

关 键 词 : 新疆 ; 降水 ; 稳定同位素 ; 云下蒸发 ; 过量氘

中国分类号: P426.612 文献标识码:A DOI:10.13826/j.cnki.cn65-1103/x.2018.03.007 文章编号:1000 - 6060(2018)03 - 0488 - 11(488 ~ 498)

氢氧稳定同位素作为天然的示踪剂,是解析水 汽来源与水力联系、恢复古气候环境、揭示生态过 程的重要手段^[1-3],而降水中的稳定同位素比率变化 规律是同位素水文学研究的重要基础^[4-6]。降水中 的D与¹⁸O比率总体呈线性关系,并常以大气水线^[7] (Meteoric Water Line,简称 MWL)的形式表现;但 是,D比¹⁸O分馏速率快,DANSGAARD^[8]采用过量氘 (deuterium excess,即d-excess= δ D-8 δ ¹⁸O)的概念 来描述二者分馏速率的差异,其大小与水汽源区的 湿度、风速和海面气温有关,同时又受到降水区蒸 发与水分内循环的影响。

一般来说,受云下二次蒸发影响,降水中的重同位素富集,氘盈余降低,但这一认识往往仅限于 定性的描述,对降水从云底降落到地面过程中同位 素变化量的认识还相对有限。STEWART¹⁹⁾基于实 验方法研究了在不同气体与气象条件下,蒸发和同 位素交换对雨滴中稳定同位素的影响。此后,Stewart的雨滴模型也被广泛应用在各种水同位素模型 中,用以刻画云下同位素的分馏机制变化^[10-13]。 FROEHLICH等^[14]建立了校正云下蒸发过程的模 型,研究了阿尔卑斯山区降水中的*d*-excess,结果 表明雨滴蒸发量与*d*-excess存在明显的线性关 系。考虑到FROEHLICH等^[14]对于部分参数没有详 细介绍其算法,KONG等^[15]明确了部分算法并将其 应用到了天山中段乌鲁木齐河流域中上游类似的方 法在祁连山的黑河流域和石羊河流域也有应用^[16-17]。鉴 于以往算法的局限性,WANG等^[18]在Stewart 模型的 基础上提出了另一种计算蒸发剩余比的思路,并将 降水高度、雨滴直径等参数根据地面气象资料设为 变量,能够更好地利用实测资料完善对同位素云下

通讯作者: 张明军 教授. E-mail: mjzhang2004@163.com

收稿日期: 2017-12-02; 修订日期: 2018-02-20

基金项目: 国家自然科学基金项目(41161012,41701028);冰冻圈科学国家重点实验室开放基金(SKLCS-OP-2017-04) 和西北师范大学青年教师科研能力提升计划项目(NWNU-LKON-15-8)资助

作者简介: 潘素敏(1992–) 山西忻州人 硕士研究生 主要从事全球变化与可持续发展方面的研究. E-mail: pansumin33@163.com

蒸发效应的认识,对天山地区20余个站点进行了评估。除此之外,围绕降水同位素的云下蒸发效应, 对 Stewart 模型的各种改进案例在其他国家也有 发表^[13]。

1961年全球范围内开始建立大气降水同位素 监测网络(Global Network of Isotopes in Precipitation, 简称 GNIP),其中涉及新疆降水同位素月值的只有 两个站点。随后的研究虽然层出不穷,但大部分集 中在天山北坡乌鲁木齐河中上游[19-21]。为了扩展对 亚洲中部干旱区降水同位素的认识 近年来西北师 范大学在天山南北坡与山区开展了全面的降水同 位素监测[18,22-24],该监测网络对研究天山地区乃至 新疆的降水同位素提供了重要的平台[25]。新疆地 处干旱半干旱区,蒸发量较大,云下二次蒸发作用 对同位素的影响不容忽略 明确云下降水中稳定同 位素的变化很有必要。从以往月尺度1151和事件尺 度^[18]下不同站点云下蒸发对降水同位素影响的研 究基础来看 进一步应用改进的 Stewart 模型和更广 泛的气象监测资料揭示同位素云下蒸发效应的时 空差异仍具有重要的意义。对于干旱区而言 ,降水 时段与非降水时段的气象参数差异明显 即使是在 同一降水事件内气象参数也存在复杂的变化,有必 要尝试利用小时尺度的气象参数开展相应的模拟 工作。因此 本文基于新疆地面自动气象站的逐小 时观测资料,采用改进后的Stewart模型,研究了新 疆云下蒸发剩余比和同位素变化量的区域差异与 月变化 分析了气象要素与过量氘变化量的关系及 云下未蒸发时过量氘的含量,进一步验证了蒸发剩 余比和过量氘变化量的线性关系。

1 数据与方法

1.1 研究区概况

新疆深居内陆,距海遥远,降水偏少,形成了明显的大陆性气候,土地面积166×10⁴km²,占中国陆域面积的1/6。山脉与盆地相间分布,喻称"三山夹二盆"。本文根据《中国自然地理总论》^[26]将新疆分为4个子区进行研究,分别是阿尔泰山地区草原针叶林区、准噶尔盆地荒漠区、天山山地荒漠草原针叶林区和塔里木盆地荒漠区(1~4号研究区),各个区域内气象站点的数量依次为11、19、1、35个(图1)。

1.2 数据来源

本文使用中国气象数据网(http://data.cma.cn) 提供的新疆66个地面自动气象站逐小时观测资料, 该数据更新周期为7d,包括气温、气压、水汽压、相 对湿度和降水量等地面常规气象参数的小时数 据。新疆地处大陆内部,属于典型的大陆性气候, 夏季降水在全年降水中所占比重较大,因此本文主 要关注2016年夏季(6~8月)新疆降水中 Δ d的变化 及降水中云下 Δ d的含量。在66个站点中,共有5 805组小时数据显示降水量不少于0.1 mm·h⁻¹,并利 用改进后的Stewart模型对过量氘的变化量进行计 算。此外,本文还采用BOWEN等^[27-28]提供的全球氢 氧同位素格点数据(http://wateriso.utah.edu/waterisotopes/),空间分辨率为10'×10',选取其中与66个气 象站经纬度对应的氢氧同位素数据,用于量化新疆 云下降水中d-excess的含量。

云下二次蒸发效应可通过云底雨滴和降落至 地面的雨滴中同位素的差异来表示,假设云下降水 与周围水汽达到平衡分馏状态,则云底雨滴中的 d = excess 与地面雨滴中的d = excess 之差(Δd)^[9,14] 可以表示为:

$$\Delta d = \left(1 - \frac{{}^{i} \gamma}{{}^{i} \alpha_{c}}\right) \left(f_{r}^{i\beta} - 1\right) - 8 \left(1 - \frac{{}^{i} \gamma}{{}^{i} \alpha_{c}}\right) \left(f_{r}^{i\beta} - 1\right) \quad (1)$$

式中: ${}^{i}\gamma$ 、 ${}^{i}\beta$ 由Stewart^[9]定义; ${}^{i}\alpha_{e}$ 为平衡分馏系数; f_{i} 为雨滴从云下降落到近地面过程中经蒸发后剩余 的物质占原物质的比例。当i为2时表示氢同位素 (2 H ,即D),当i为18时表示氧同位素(18 O)。 类似地,云底雨滴中的 δ D 与地面雨滴中 δ D 的之差

(Δδ D)可以表示为:

$$\Delta \delta \mathbf{D} = \left(1 - \frac{i\gamma}{i\alpha_c}\right) \left(f_r^{i\beta} - 1\right)$$
(2)

参数^{$i \gamma$}和^{$i \beta$}的计算方法^[9]为:

$${}^{i}\gamma = \frac{{}^{i}rRH}{1 - {}^{i}\alpha ({}^{i}D_{r}/{}^{i}D_{r}/{}^{n}(1 - RH)}$$
(3)

$${}^{i}\beta = \frac{1 - {}^{i}\alpha ({}^{i}D_{r}/{}^{i}D_{r}')^{n}(1 - RH)}{{}^{i}\alpha ({}^{i}D_{r}/{}^{i}D_{r}')^{n}(1 - RH)}$$
(4)

式中:^{*i*}α_{*c*}为平衡分馏系数;*RH*为相对湿度;^{*i*}D,/^{*i*}D,/ 为水同位素分子扩散系数,对²D,/²D,'和¹⁸D,/¹⁸D,/ 分别取1.024和1.0289,*n*取0.58。

参数 ²α、¹⁸α 的计算方法^[29-30]为:

$${}^{2}\alpha = \exp\left(\frac{2.4844 \times 10^{4}}{T^{2}} - \frac{76.248}{T} + 5.2612 \times 10^{-2}\right) (5)$$

$${}^{18}\alpha = \exp\left(\frac{1.137 \times 10^{3}}{T^{2}} - \frac{0.4156}{T} - 2.0667 \times 10^{-3}\right) (6)$$

式中:T为气温(K)。

蒸发剩余比(*f*,),这里参考 WANG 等^[18]的方法 通过雨滴从云底降落至地表的质量变化计算:

$$f_r = \frac{m_{end}}{m_{end} + m_{ev}} \tag{7}$$

式中: m_{end} 是雨滴落地时的质量(g); m_{ex} 为雨滴蒸 发损失的质量(g),可表示为单位时间内雨滴蒸发速 率(r_{ex})与雨滴降落时间(t)的乘积,雨滴降落时间可 采用拉普拉斯云高公式和雨滴末速度计算得到^[18]。

根据 KINZER 等^[31],雨滴蒸发速率(r_{a})可以表示为 Q_1 和 Q_2 的乘积,即

$$r_{ev} = Q_1 Q_2 \tag{8}$$

式中: Q_1 是气温和雨滴直径的函数(cm); Q_2 是气 温和相对湿度的函数($g \cdot cm^{-1} \cdot s^{-1}$)。本文参考 WANG等^[18]的方法,根据KINZER等^[31]文献中不同 气温、相对湿度和雨滴直径参数下的 Q_1 和 Q_2 利用 双线性插值的方法分别得到本研究中具体气象参 数下 Q_1 和 Q_2 的数值。

2 结果与分析

2.1 蒸发剩余比、 $\Delta d \, \pi \Delta \delta D$ 的时空变化

2.1.1 蒸发剩余比、Δ*d*和ΔδD的时间变化 图2a显示了新疆不同区域雨滴蒸发剩余比的月变化。阿尔泰山地区的蒸发剩余比在9.03%~99.98%,准噶尔盆地区在5.26%~99.92%,天山山地区的蒸发剩余

图 2 2016年夏季新疆蒸发剩余比、 Δd 和 $\Delta \delta$ D的月变化 Fig. 2 Monthly variation of remaining fraction, Δd and $\Delta \delta$ D in precipitation in Xinjiang during summer 2016

比在16.57%~99.78%,塔里木盆地区的蒸发剩余比 在9.70%~99.77%。从月变化上看,阿尔泰山地区、 准噶尔盆地区的蒸发剩余比7月最小 6月最大。天 山山地区、塔里木盆地区的蒸发剩余比6月最小 8 月最大。在四个研究区内,塔里木盆地区的蒸发剩 余比的变化差异最大,6、7月蒸发剩余比均低于 70% 8月蒸发剩余比较6、7月大。

图 2b 显示了新疆不同区域降水中Δd 的月变

化,变化趋势与蒸发剩余比类似。从中值来看,阿尔泰山地区、准噶尔盆地区、天山山地区降水中 Δd 均>-10%,塔里木盆地区降水中 Δd <-10%。从月 变化来看,阿尔泰山地区、准噶尔盆地区、天山山地 区的降水中 Δd 的月变化差异较塔里木盆地区小, 6~8月降水中塔里木盆地区 Δd 的中值变幅最大,变 幅在-40‰~-10‰之间,而阿尔泰山地区、准噶尔 盆地区、天山山地区的降水中 Δd 的在-20‰~0‰。

 $\Delta \delta D(图 2c)$ 的变化表现出与蒸发剩余比、 Δd 相反的变化趋势。从月变化上看,阿尔泰山地区、 准噶尔盆地区的 $\Delta \delta D$ 7月最大, δ 月最小,天山山地 区、塔里木盆地区的 $\Delta \delta D$ 月变化相似, δ 月最大,8月最小。在4个研究区内,塔里木盆地区的 $\Delta \delta D$ 变 化差异最大。

图3显示了不同研究区内蒸发剩余比和Δd两 者之间的相关性。四个研究区内蒸发剩余比和Δd 的相关性都较好,其中阿尔泰山地区、准噶尔盆地 区、天山山地区 r² 均超过 0.90。阿尔泰山地区、天 山山地区的斜率均小于 1‰·%⁻¹,其中天山山地区 的斜率更接近 1‰·%⁻¹。准噶尔盆地区和塔里木盆 地的斜率均超过 1‰·%⁻¹,其中塔里木盆地区的斜 率较大、相关性较差,r²为 0.89,在4个研究区中塔 里木盆地的相关性最差,斜率最大。当蒸发剩余比 大于 80%时,蒸发剩余比和Δd 的线性关系较好,当 蒸发剩余比小于 60%时,则线性关系逐渐变弱,甚 至偏离线性关系。

2.1.2 蒸发剩余比、 $\Delta d \approx \Delta \delta D$ 的空间变化 Stewart 模型需要气温、相对湿度与雨强等气象因子的输 入 图4是新疆夏季降水期间平均气温、平均相对湿 度、平均雨强的空间分布。与夏季平均气温相比, 降雨时整个新疆气温都会偏低,阿尔泰山地区、塔 里木盆地区大部分气象站的平均气温在15~20°C, 天山山地区和部分准噶尔盆地区的气象站气温低 于15°C。整个新疆降雨时的相对湿度都大于50%,

Fig. 3 Relationship between remaining fraction and Δd in precipitation in Xinjiang during summer 2016

图 4 2016年夏季新疆降水期间气象要素的空间分布

Fig. 4 Spatial distribution of meteorological parameters in precipitation events in Xinjiang during summer 2016

在塔里木盆地区南缘、准噶尔盆地区南缘平均相对 湿度最高,甚至高于80%。全区夏季平均雨强在塔 里木盆地区南缘较小,在塔里木盆地区北缘、准噶 尔盆地平均雨强较大。由此可见,降水时段内的气 象参数与非降水时段确实存在着显著的差异,夏季 平均状态的气象参数空间分布未必与降水时段内 的气象参数空间分布完全吻合。

图5显示了新疆蒸发剩余比(图5a)、 Δd (图5b) 和 $\Delta \delta$ D(图5c)的空间分布特征。新疆阿尔泰山地 北部地区、准噶尔盆地东南地区、塔里木盆地南缘 地区的蒸发剩余比较大,大部分蒸发剩余比均超过 80%,这可能是由于相对湿度大、气温较低造成的。 吐鲁番盆地北缘地区、准噶尔盆地西部地区蒸发剩 余比较小,大部分蒸发剩余比均小于75%。 Δd 呈现 出与蒸发剩余比类似的空间分布,新疆北部阿尔泰 山地、准噶尔盆地东南地区、塔里木盆地南缘的 Δd 较大, Δd 均超过-20%,吐鲁番盆地北缘、准噶尔盆 地的西部地区 Δd 较小, Δd 均小于-30%。新疆北部 阿尔泰山地北部地区、准噶尔盆地东南地区、塔里 木盆地南缘地区的 $\Delta \delta D$ 较小,大部分 $\Delta \delta D$ 均超过 20‰,吐鲁番盆地北缘地区、准噶尔盆地西部地区 $\Delta \delta D$ 较大,大部分 $\Delta \delta D$ 均超过30‰。

2.2 气象要素与∆d的关系

研究时段内新疆全部降水中蒸发剩余比和 Δd 的关系可以发现,蒸发剩余比和 Δd 的线性关系随着 气温的升高而变弱,即正相关,随着相对湿度、降水 强度和雨滴直径的增大而变强,即负相关。当气温 低于0℃时,蒸发量小 Δd 约为0。当相对湿度高于 95%时, Δd 变化较小。从降水强度和 Δd 的关系来 看,当降水强度小于1 mm时, Δd 在0‰~-230‰之 间,变化幅度大,但随着降水强度的增加 Δd 则越接 近0。在雨滴直径大于2 mm的情况下, Δd 越接近0, 当雨滴直径较小的情况下, Δd 在0‰~-230‰之 间 Δd 的变化幅度较大。

气象条件的差异性导致了蒸发剩余比和 Δd 的 不同(表1)。当气温低于10℃时,蒸发剩余比和 Δd 的线性关系极强, r^2 为0.99,斜率小于1‰·%⁻¹,但 气温介于10~20℃时(包含10℃),蒸发剩余比和

Fig. 5 Spatial distribution of remaining fraction, Δd and $\Delta \delta D$ in precipitation in Xinjiang during summer 2016

 Δd 线性关系较好,斜率小于1‰·%⁻¹相关性没有前 者好,当气温高于20 °C时,斜率明显增大,达到 1.2‰·%⁻¹线性关系和相关性变弱。在相对湿度小于 70%的情形下,斜率高达1.4‰·%⁻¹线性关系最弱,但 随着相对湿度的增大,蒸发剩余比和 Δd 也逐渐增 大,当相对湿度高于90%,蒸发剩余比和 Δd 也逐渐增 大,当相对湿度高于90%,蒸发剩余比大于80%, Δd 高于-10‰。在降水强度不小于5 mm·h⁻¹情况下,蒸发 剩余比和 Δd 高度相关, r^2 为0.99,斜率为1.10‰·%⁻¹, 当降水强度小于5 mm·h⁻¹且不小于1 mm·h⁻¹时,斜率 为1.10‰·%⁻¹,与前者斜率相同,但当降水强度小于 1 mm·h⁻¹时,斜率变小,为1.04‰·%⁻¹,蒸发剩余比和 Δd 相关性最弱。当雨滴直径小于0.8 mm时,斜率为 1.02‰·%⁻¹, r^2 为0.88,随着雨滴直径的增大,斜率也 在增加,相关性增强,当雨滴直径不小于5 mm时,斜 率达到1.11‰·%⁻¹, r^2 升到0.98。

综上所述,通过对比不同气象条件下蒸发剩余 比和Δd的关系可以明确,当在气温低、相对湿度大、 降水强度大、雨滴直径大的情况下,蒸发剩余比则 会较大,Δd接近于0,蒸发剩余比和Δd的线性关系 较强 斜率较小 即蒸发剩余比增加1%时Δd的变化 一般小于1‰ ;当在与之相反的情形下 蒸发剩余比 则会较小 Δd变化显著 蒸发剩余比和Δd的线性关 系变弱 斜率变大 即蒸发剩余比减小1%时Δd的变 化往往大于1‰。这与WANG等^[18]之前的研究得出 的结果是吻合的。

2.3 d-excess变化量的敏感性分析

敏感性分析(Sensitivity Analysis)是分析某个或 某几个敏感性较强的因素的变动对某一对象带来 的影响及其影响程度的分析。图6显示了不同气温 和相对湿度的变化能引起Δd的变化情况。2016年 夏季新疆降水时的气温在-2.6~31.4℃之间波动,平 均气温为16.53℃,相对湿度在22%~99%之间波 动,平均相对湿度为82.26%,降水强度在0.1~23.5 mm·h⁻¹之间波动。以2℃为步长来研究气温从降低 10℃至升高10℃情况下Δd的变化情况,如果各气 象站的气温升高2℃,Δd降幅为0.26‰~3.10‰。 如果各气象站的相对湿度升高5%,Δd升幅为 1.23‰~8.34‰。如果各气象站的雨强增大10%,

		4	1
		4	

卷

Tab. 1 Relationship between remaining fraction and Δd under different conditions							
影响因子	范围	斜率	截距	相关系数	样本数量		
气温 / ℃	<i>T</i> < 10	0.87	-87.49	0.90**	563		
	$10 \le T \le 20$	0.88	-87.95	0.93**	4 053		
	<i>T</i> ≥20	1.20	-111.52	0.84^{**}	1 189		
	<i>RH</i> <70	1.40	-119.41	0.76**	879		
相对湿度 / %	$70 \leq RH \leq 90$	0.70	-72.36	0.97**	3 215		
	<i>RH</i> ≥90	0.79	-79.36	0.98^{**}	1 990		
雨强 / mm∙h⁻¹	<i>P</i> <1	1.04	-101.54	0.86**	4 0 3 6		
	1≤ <i>P</i> <5	1.10	-109.56	0.98^{**}	1 631		
	<i>P</i> ≥5	1.10	-109.37	0.99**	138		
雨滴直径 / mm	$D \le 1$	1.02	-100.48	0.88^{**}	2 066		
	$1 \le D \le 5$	1.10	-108.89	0.94**	2 586		
	<i>D</i> ≥ 5	1.11	-111.58	0.98**	1 153		

表1 不同影响因子下蒸发剩余比和Δd的关系

"在0.01水平上显著相关

 Δd 升幅为 0.06‰ ~ 0.89‰。

雨滴直径和形态不属于常规气象观测,但雨滴 直径是云下二次蒸发研究中的重要参数之一。前 人在大部分的研究中将雨滴直径设为定值,例如 FROEHLICH等^[14]研究阿尔卑斯山云下二次蒸发效 应时将其设为2.6 mm,KONG等^[15]研究天山乌鲁木 齐河中上游时将其设为0.76 mm。近年来也有研究 将其设为变量,例如WANG等^[18]研究中国天山云下 二次蒸发效应时,雨滴直径主要在 $0.6 \sim 1.2 \text{ mm}$ 之间 波动。图6d反映了以0.2 mm为步长雨滴直径增加 量从 $-0.2 \sim 2 \text{ mm}$ 引起 Δd 的变化情况。如果雨滴直径 增加 $0.2 \text{ mm} \Delta d$ 升幅为 $0.98\% \sim 8.16\%$,但雨滴直径 增加量大于1.2 mm时 Δd 的变化基本趋于稳定。

2.4 $\overline{\Box} \overline{\upharpoonright} d$ – excess

上文通过模型得到了新疆不同区域降水中同 位素从云底到近地面的变化量,而地面降水同位素

Fig. 6 Variation of Δd in precipitation under different conditions in Xinjiang during summer 2016

值(即地面的降水同位素景观)已知,云下降水同位 素的分布情况即可获得。本文采用 BOWEN 等^[27-28] 提出的同位素景观模型,将本研究得到的同位素变 化量与之进行加和 得到了云下降水中 d-excess 的 值(图7)。6月(图7a)云下降水中d-excess的值在 阿尔泰山地区、准噶尔盆地区、天山山地区大部分 均低于40‰ 塔里木盆地区云下降水中d-excess 的 值变化幅度较大。7月(图7b)云下降水中d-excess 的值在阿尔泰山地区、准噶尔盆地区、天山山地区 较小 塔里木盆地区云下降水中 d-excess 的值超过 50‰的气象站的数量减少。8月(图7c)云下降水中 d-excess 的值大部分站点都小于 30‰ 其中一部分 甚至小于10‰,只有两个气象站云下降水中d-excess 超过 50‰。综上所述 ,6~8月云下降水中 dexcess 的值逐渐变小 这一现象在塔里木盆地最为 明显,说明该区域蒸发较为强烈。

3 讨 论

75°E 80°E 85°F 90°E 80°E 85°F 90°E $50^{\circ}N$ 50°N 50°N 50°1 (a) 6月 45°N 45°N 45°N 45°N $40^{\circ}N$ 40°N 40°N 40°N 35∘N 35°N 35°N 35° 75°E 85°E 95°E 90°E 75°E 80°E 85°E 90°E 95°E 80°E 85°E 75°E 80°E 90°E 95°E 50°N 20°N (c) 8月 400 ⊐km 45°N 45°N **40 ~ 50 O** 20 ~ 30 **○** ≤ 10 **O** 30 ~ 40 ● ≥ 50 $10 \sim 20$ $40^{\circ}N$ $40^{\circ}N$ 35°N 35°N 75°E 80°E 85°E 90°E 图7 2016年夏季新疆云底降水中 d-excess 的空间变化

在内陆干旱半干旱地区,云下二次蒸发过程对

降水中氢氧稳定同位素影响不容忽视[18,32-33]。 FROEHLICH 等^[14]研究阿尔卑斯山区降水中的 d-excess ,表明雨滴蒸发量每增大 1% , Δd 约减小 1‰,二者存在明显的线性关系。由于输入气象参 数相对较多 这种线性关系被尝试应用于其他研究 区^[34-36] 即根据同位素的变化量反推雨滴的蒸发量, 进而评价云下二次蒸发的强度。然而,上述关系是 基于湿润条件下提出的 ,雨滴蒸发量与Δd之间这种 线性关系的适用性需要进一步的考虑。KONG等^[14] 在研究天山中段乌鲁木齐河流域中上游云下蒸发 过程中得出降水蒸发剩余比每增加1%, 氘盈余降 低 1.1‰~ 1.2‰, 与 FROEHLICH 等[14]存在细微的差 异,但KONG等^[14]模拟得到的仍然是蒸发剩余比相 对比较高(>95%)情况下的结果 即在输入月平均气 象参数时雨滴在云下并未经历极其强烈的蒸发。 实际上,在一些干旱的环境下,雨滴从云底落到地 面的蒸发量大于10%可能十分普遍[37] 雨滴在降落 至地面前几乎完全蒸发也是有可能的,那么利用 1‰/%的线性关系在干旱地区进行反推可能就不一 定合理了。实际上 WANG 等^[18]将 Stewart 的降水高

度、雨滴直径等参数根据气象资料设为变量,基于 事件尺度的降水资料计算了整个天山降水同位素 云下蒸发效应,证实1‰·%⁻¹的线性关系未必适用 于蒸发剩余比较小的区域,尤其是在干旱区,这种 适用性会降低。SALAMALIKIS等^[13]研究得出雨滴 蒸发量每增大1% Δd约减小1.1‰~1.3‰。显然同 一降水事件内气象参数的变化复杂,本研究采用逐 小时数据分析了新疆云下二次蒸发对 d-excess 的 影响,得出在不同的气象条件和雨滴直径下,约 1‰·%⁻¹的线性关系确实发生变化。从本文小时尺 度的分析计算来看,反推1‰·%⁻¹的线性关系存在 一定的不确定性,尤其是在干旱区,1‰·%⁻¹的线性 关系的使用条件需慎重考虑。

4 结 论

本研究利用改进后 Stewart 模型对新疆降水从 云底到地面过程中 *d*-excess 变化量进行了定量计 算,分析了气象要素与Δ*d*的关系,并且给出了新疆 6~8月云下*d*-excess 的空间分布图。本研究主要 得出以下结论:

(1)4个研究区内,降水中d-excess 从云底到地 面过程中变化差异较大。从月变化看,阿尔泰山地 区、准噶尔盆地区的 Δd 和蒸发剩余比7月最小,6月 最大。天山山地区、塔里木盆地区的 Δd 和蒸发剩余 比在月变化上相似,6月最小,8月最大。在空间上, 阿尔泰山地北部地区、准噶尔盆地东南地区、塔里 木盆地南缘地区的 Δd 和蒸发剩余比较大,吐鲁番盆 地北缘地区、准噶尔盆地的西部地区 Δd 和蒸发剩余 比较小。 δ D表现出与蒸发剩余比和 Δd 相反的变化 趋势。蒸发剩余比和 Δd 存在线性关系,即蒸发剩余 比每增加1%,总体而言降水中 Δd 减小约1‰。

(2)当在气温低、相对湿度大、降水强度大、雨 滴直径大的情况下,蒸发剩余比则会较大,Δd接近 于0,二者线性关系明显,斜率较低,即蒸发剩余比 增加1%时Δd的变化往往小于1‰;当在与之相反的 情形下,蒸发剩余比减小1%时Δd的变化往往大于 1‰。反推1‰·%⁻¹的线性关系存在一定的不确定 性,尤其是在干旱区,1‰·%⁻¹的线性关系的使用条 件需慎重考虑。

(3) 通过敏感性分析可以得出,如果各气象站

的气温升高 2 °C Δd 降幅为 0.26‰ ~ 3.10‰。如果 各气象站的相对湿度升高 5% Δd 升幅为 1.23‰ ~ 8.34‰。如果各气象站的雨强增大 10% Δd 升幅为 0.06‰ ~ 0.89‰。如果雨滴直径增加 0.2 mm Δd 升 幅为 0.98‰ ~ 8.16‰ ,但雨滴直径增加量大于 1.2 mm时 Δd 变化量基本趋于稳定。 Δd 对相对湿度的 变化响应叫其他参数更为强烈。

(4)6~8月云下降水中*d*-excess 的值逐渐变 小。具体来说 随着时间的推移云下降水中*d*-excess 的值超过 50‰的气象站的个数逐渐变少 *d*-excess 的值小于 20‰的气象站的个数逐渐增多 ,这一现象 在塔里木盆地区最为明显 ,表明该区域蒸发较为 强烈。

参考文献(References)

- [1] ANDREEVA D B ,ZECH M ,GLASER B ,et al. Stable isotope (δ ¹³C β¹⁵N β¹⁸O) record of soils in Buryatia southern Siberia Implications for biogeochemical and paleoclimatic interpretations [J]. Quaternary International 2013 290 82–94.
- [2] KLEIN E S ,NOLAN M ,MCCONNELL J ,et al. McCall Glacier record of Arctic climate change :Interpreting a northern Alaska ice core with regional water isotopes [J]. Quaternary Science Reviews 2016 ,131 274-284.
- [3] CINER B ,WANG Y ,PARKER W. Oxygen isotopic variations in modern cetacean teeth and bones :Implications for ecological ,paleoecological , and paleoclimatic studies [J]. Science Bulletin , 2016 ,61(1) 92–104.
- [4] CRAWFORD J ,HUGHES C E ,PARAKES S D. Is the isotopic composition of event based precipitation driven by moisture source or synoptic scale weather in the Sydney Basin , Australia ? [J]. Journal of Hydrology 2013 ,507 213-226.
- [5] ZHANG M ,WANG S. A review of precipitation isotope studies in China :Basic pattern and hydrological process[J]. Journal of Geographical Sciences 2016 26(7) 921–938.
- [6] LI J ,TAO T ,PANG Z ,et al. Identification of different moisture sources through isotopic monitoring during a storm event[J]. Journal of Hydrometeorology 2015,16(4):1918–1927.
- [7] CRAIG H. Isotopic variations in meteoric waters [J]. Science, 1961,133(3465):1702–1703.
- [8] DANSGAARD W. Stableisotopes in precipitation [J]. Tellus, 1964,16(4):436-468.
- [9] STEWART M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops :Applications to atmospheric processes and evaporation of lakes [J]. Journal of Geophysical Research ,1975 ,80(9) :1133-1146.
- [10] ZHANG X ,XIE Z ,YAO T. Mathematical modeling of variations on stable isotopicratios in ratios in falling raindrops[J]. Acta Me-

teorologica Sinica ,1998 ,12(2) 213-220.

- [11] GEORGAKAKOS K P ,BRAS R L. A hydrologically useful station precipitation model :1.Formulation[J]. Water Resources Research ,1984 ,20(11) :1585–1596.
- [12] YOSHIMURA K ,KANAMITSU M ,NOONE D ,et al. Historical isotope simulation using reanalysis atmospheric data[J]. Journal of Geophysical Research :Atmospheres ,2008 ,113(D19) :2156– 2202.
- [13] SALAMALIKIS V ,ARGIRIOU A A ,DOSTSIKA E. Isotopic modeling of the sub-cloud evaporation effect in precipitation[J].Science of the Total Environment ,2016 ,544 :1059–1072.
- [14] FROEHLICH K ,KRALIK M ,PAPESCH W ,et al. Deuterium excess in precipitation of Alpine regions-moisture recycling[J].Isotopes in Environmental and Health Studies 2008 A4(1) 501-70.
- [15] KONG Y ,PANG Z ,FROEHLICH K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[J]. Tellus B 2013 65 :19251.
- [16] LI Z ,FENG Q ,WANG Q ,et al. Contributions of local terrestrial evaporation and transpiration to precipitation using δ^{18} O and D-excess as a proxy in Shiyang inland river basin in China[J].Global and Planetary Change 2016 ,146 :140–151.
- [17] LI Z ,FENG Q ,WANG Q ,et al. The influence from the shrinking cryosphere and strengthening evopotranspiration on hydrologic process in a cold basin ,Qilian Mountains[J]. Global and Planetary Change 2016 ,144 :119-128.
- [18] WANG S ,ZHANG M ,CHE Y ,et al. Influence of below-cloud evaporation on deuterium excess in precipitation of arid Central Asia and its meteorological controls[J]. Journal of Hydrometeorology 2016 ,17(7) :1973-1984.
- [19] YAO T ,VALERIE M ,JOUZEL J ,et al. Relationships between δ ¹⁸O in precipitation and surface air temperature in the Urumqi River Basin ,east Tianshan Mountains ,China[J]. Geophysical Research Letters ,1999 ,26(23) 3473-3476.
- [20] PANG Z ,KONG Y ,FROEHLICH K et al. Processes affecting isotopes in precipitation of an arid region[J]. Tellus B ,63(3) 352– 359.
- [21] FENG F ,LI Z ZHANG M ,et al. Deuterium and oxygen 18 in precipitation and atmospheric moisture in the upper Urumqi River Basin ,eastern Tianshan Mountains[J]. Environmental Earth Sciences 2013 ,68(4) :1199–1209.
- [22] WANG S ,ZHANG M ,HUGHES C E ,et al. Factors controlling stable isotope composition of precipitation in arid conditions :An observation network in the Tianshan Mountains ,Central Asia[J]. Tellus B 2016 ,68 26206.
- [23] WANG S ,ZHANG M ,CHE Y ,et al. Contribution of recycled moisture to precipitation in oases of arid Central Asia :A stable isotope approach[J]. Water Resources Research ,2016 ,52(4) : 3246-3257.
- [24] WANG S ,ZHANG M ,CRAWFORD J ,et al. The effect of moisture source and synoptic conditions on precipitation isotopes in arid Central Asia [J]. Journal of Geophysical Research : Atmospheres 2017 ,122(5) 2667–2682.

- [25] 王圣杰 涨明军.新疆天山降水稳定同位素的时空特征与影响 因素[J]. 第四纪研究,2017,37(5):1119-1130.[WANG Shengjie,ZHANG Mingjun. Spatio-temporal characteristics and influencing factorsof stable isotopes in precipitation across the Chinese Tianshan Mountains[J]. Quaternary Sciences,2017,37 (5):1119-1130.]
- [26] 郑度 杨勤业,吴绍洪,等.中国自然地理总论[M].北京 科学 出版社,2015. [ZHENG Du,YANG Qinye,WU Shaohong, et al. General Physical Geography of China [M]. Beijing:Science Press 2015.]
- [27] BOWEN G J ,REVENAUGH J. Interpolating the isotopic composition of modern meteoric precipitation[J]. Water Resources Research 2003 39(10) :1299.
- [28] BOWEN G J ,WASSENAAR L I ,HOBSON K A. Global application of stable hydrogen and oxygen isotopes to wildlife forensics [J]. Oecologia 2005 ,143(3) 337–348.
- [29] FRIEDMAN I , O 'NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest [M]// FLEISCHER M. Data of Geochemistry. Washington , USA : US Geological Survey , 1977.
- [30] CRISS R E. Principles of stable Isotope Distribution [M]. New York , USA :Oxford University , 1999.
- [31] KINZER GD , GUNN R. The evaporation , temperature and thermal relaxation-time of freely falling waterdrops[J]. Journal of Meteorology ,1951 &(2) .71-83.
- [32] 赵诗坤,庞朔光,文蓉,等.海河流域降水稳定同位素的云底二次蒸发效应[J].地理科学进展,2015,34(8):1031-1038.
 [ZHAO Shikun,PANG Shuoguang,WEN Rong, et al. Influence of below-cloud secondary evaporation on stable isotope composition in precipitation in the Haihe River Basin ,China[J]. Progress in Geography 2015,34(8):1031-1038.]
- [33] 孟玉川,刘国东. 长江流域降水稳定同位素的云下二次蒸发效应[J],水科学进展,2010,21(3):327-334.[MENG Yuchuan, LIU Guodong. Effect of below-cloud secondary evaporation the stable isotopes in precipitation over the Yangtze River Basin[J]. Advancesin Water Science 2010,21(3):327-334.]
- [34] MA Q ,ZHANG M ,WANG S ,et al. An investigation of moisture sources and secondary evaporation in Lanzhou , northwest China [J]. Environmental Earth Sciences 2014 71(8) 3375–3385.
- [35] CHEN F , ZHANG M , WANG S ,et al. Relationship between subcloud secondaryevaporation and stable isotope in precipitation of Lanzhou and surrounding area [J]. Quaternary International , 2015 380 68-74.
- [36] PENG T R , LIUK K , WANG C H , et al. A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan : A case study in the western Pacific[J]. Water Resources Research ,2011 ,47(8) , W08507.
- [37] 吴兑.关于雨滴在云下蒸发的数值试验[J].气象学报,1991 49
 (1):116-121.[WU Dui. The numerical test on evaporation of raindrop beneath cloud[J]. Acta Meteorologica Sinica,1991,49
 (1):116-121.]

Quantitative study of sub-cloud secondary evaporation effect on stable isotopes in raindrops during summer in Xinjiang

PAN Su-min¹ , ZHANG Ming-jun¹ , WANG Sheng-jie^{1,2}

(1 College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, Gansu, China;

2 State Key Laboratory of Cryospheric Science, Northwest Instituteof Eco-Environment and Resources, CAS ,Lanzhou 730000, Gansu, China)

Abstract: In the arid area, the sub-cloud secondary evaporation usually occurs to the raindrops. It is important to understand the variation of the stable hydrogen and oxygen isotopes of the raindrops when they travel from cloud-base to the ground in the isotope hydrological studies. Based on the hourly meteorological observations from the meteorological stations in Xinjiang, China, the temporal and spatial characteristics of the sub-cloud evaporation residue ratio (which is the ratio of the residual volume of the raindrops after the evaporation as they travel from cloud-base to the near-surface to the original volume, f), the δD variation ($\Delta \delta D$) of the raindrops and the deuterium excess change (Δd) were analyzed by using the modified Stewart model. The relationship between Δd and meteorological parameters as well as the sensitivity analysis of Δd were also analyzed. The results showed as follows :(1) The values of Δd and f present spatial dependency in Xinjiang .(2) Under the conditions of low temperature ,high relative humidity ,high rainfall intensity and large raindrop diameter , f is usually large and Δd is close to 0. The linear relationship between f and Δd is evidenced and the slope is low. However the regression coefficients are not always stable under different meteorological conditions, thus the inversion computation of the parameter f based on this linear relationship should be treated with caution .(3) The sensitivity analysis indicates that , if the temperature was increased by 2 °C , Δd was decreased by 0.26‰ - 3.10‰ ; If the relative humidity was increased by 5%, Δd was increased by 1.23‰ - 8.34‰; If precipitation intensity was increased by 10% Δd was increased by 0.06‰ - 0.89‰; If the raindrop diameter was increased by 0.2 mm Δd was increased by 0.98‰ - 8.16‰. However, if the raindrop diameter was larger than 1.2 mm Δd tended to be stable. **Key words**: Xinjiang; precipitation; stable isotope; sub-cloud evaporation; deuterium excess